分类: AI

  • 打破瓶颈:一种层次化框架优化大规模语言模型的答案选择

    近年来,基于链式思维提示(Chain-of-Thought, CoT)的技术进步为大规模语言模型(LLMs)在复杂推理任务中带来了显著突破。然而,当模型生成多个推理链并基于答案频率进行集成时,正确答案在少数情况下的表现仍然较差。本文提出的层次化推理聚合框架AoR(Aggregation of Reasoning)通过评估推理链的方式来选择答案,并根据任务复杂度动态调整推理链的数量,显著提升了LLM的推理性能。

    背景与现状

    LLMs在各种自然语言处理任务中取得了显著进展,但在推理任务上与人类水平仍存在差距。传统方法通过增加模型的规模来提升性能,但效果有限。链式思维提示技术通过生成一系列中间步骤来简化每一步的复杂性,提供了一种新颖的视角来解决复杂推理任务。

    然而,目前的多数投票集成方法在错误答案多于正确答案时表现不佳。本文通过对多个推理任务的分析发现,超过80%的样本尽管LLMs能够生成正确答案,但多数投票仍然导致错误预测。例如,在AQuA数据集中,尽管模型生成了正确答案,但由于错误答案的数量优势,最终选择了错误答案。

    研究问题

    在LLMs能够生成正确答案的情况下,如何减小错误答案的干扰以准确选择正确答案?为了回答这一问题,本文提出了AoR框架,通过评估推理链来提升答案选择的准确性。

    AoR框架

    AoR框架分为两个阶段:局部评分和全局评价。在局部评分阶段,评估产生相同答案的推理链,重点关注推理过程的合理性和步骤的适当性。在全局评价阶段,联合评估不同答案组中最具逻辑一致性和方法有效性的推理链,确定最佳推理链并将其对应的答案作为最终输出。

    此外,AoR利用全局评价阶段的评分来估计模型对其最优推理过程和答案的信心水平,动态决定是否需要采样更多的推理链。这种动态采样机制在平衡性能和计算成本方面表现出色。

    实验结果

    实验结果表明,AoR在各种推理任务中的表现优于现有的集成方法。特别是在任务难度较大的情况下,AoR通过动态采样显著提升了LLMs的推理性能,减少了推理开销。

    主要贡献

    1. 识别出现有依赖答案频率的集成机制的不足,强调了推理过程的重要性,设计了层次化推理聚合框架AoR。
    2. 利用最优推理链的评分,AoR动态调整采样数量,在平衡性能和计算成本方面表现优异。

    结论

    本文提出的AoR框架通过评估推理链显著提升了LLMs在复杂推理任务中的性能,为未来的研究和应用提供了新的思路。未来的工作可以进一步优化AoR的评估机制和动态采样策略,以应对更复杂的推理任务。


    arxiv.org/pdf/2405.12939#pdfjs.action=download


    我们来深入了解一下 AoR 框架的各个组成部分,以及它是如何解决大型语言模型 (LLMs) 在复杂推理任务中所面临挑战的。

    现有问题:

    现有的 LLM 推理方法,特别是依赖答案频率进行集成的那些,在面对正确答案属于少数情况时往往表现不佳。这是因为:

    • 多数投票偏差: 当错误答案的数量超过正确答案时,即使 LLM 能够生成正确答案,基于多数投票的机制也可能倾向于选择错误的最终预测。
    • 缺乏推理质量评估: 许多方法仅仅依靠答案出现的频率,而没有对推理过程本身进行质量评估,导致难以区分逻辑合理但答案罕见的情况。

    AoR 框架如何解决这些问题:

    AoR (Aggregation of Reasoning) 框架通过以下几个关键组件来解决上述问题:

    1. 局部评分 (Local-Scoring):
    • 分组: AoR 首先使用 CoT (Chain-of-Thought) prompting 技术生成多个推理链,并将得出相同答案的推理链归为一组。
    • 评估: 在每个组内,AoR 会根据预定义的标准(例如逻辑一致性、步骤清晰度、知识运用等)对每个推理链进行评分。
    • 筛选: AoR 会选择每个组中得分最高的 k 个推理链作为代表,传递到下一阶段。 作用: 局部评分阶段的目标是筛选出每个答案组中推理质量最高的代表性推理链,避免仅仅依赖答案频率进行筛选。
    1. 全局评估 (Global-Evaluation):
    • 代表推理链比较: AoR 从每个答案组中选择一个得分最高的推理链,并将这些代表推理链进行比较。
    • 最终答案选择: AoR 会根据预定义的标准(与局部评分类似)对代表推理链进行评估,并选择得分最高的推理链所对应的答案作为最终答案。 作用: 全局评估阶段的目标是从不同答案中选择推理最充分、逻辑最合理的答案,避免多数投票偏差。
    1. 动态采样 (Dynamic Sampling):
      • 分数差距判断: AoR 会根据全局评估阶段中最高分和次高分推理链之间的分数差距来判断是否需要生成更多推理链。
      • 动态调整: 如果分数差距小于预设阈值,意味着模型对最终答案的选择不够确定,AoR 会自动生成更多推理链,并重复上述评分和评估过程,直到达到预设的置信度或推理链数量上限。
      作用: 动态采样机制能够根据任务的复杂性和模型的置信度自适应地调整推理链的数量,在保证准确性的同时提高效率。

    总结:

    AoR 框架通过结合局部评分、全局评估和动态采样机制,有效地解决了现有 LLM 推理方法的局限性。它不仅关注答案的频率,更注重对推理过程本身进行质量评估,从而提高了 LLM 在复杂推理任务中的准确性和可靠性。

    希望这个解释能够帮助你更好地理解 AoR 框架! 😊


    让我们通过一个例子来说明 AoR 框架如何应用于大型语言模型的复杂推理任务中。

    假设我们现在有一个常识推理任务:

    问题: 小明在公园里散步,突然下起了大雨。他没有带伞,结果全身都湿透了。请问小明应该怎么做才能避免淋湿?

    传统的基于答案频率的 LLM 推理方法可能会生成以下推理链和答案:

    • 推理链 1: 下雨了,小明没有带伞,所以他淋湿了。他应该回家。 (答案:回家)
    • 推理链 2: 下雨了,小明没有带伞,所以他淋湿了。他应该躲到树下。 (答案:躲到树下)
    • 推理链 3: 下雨了,小明没有带伞,所以他淋湿了。他应该跑到附近的商店里避雨。 (答案:跑到商店里)
    • 推理链 4: 下雨了,小明没有带伞,所以他淋湿了。他应该回家。 (答案:回家)

    如果仅仅根据答案频率,”回家” 出现了两次,会被认为是最佳答案。

    然而,”躲到树下” 或者 “跑到商店里” 才是更合理的答案。

    现在我们来看看 AoR 框架如何处理这个问题:

    1. 局部评分: AoR 会将产生相同答案的推理链分组,并对每个推理链进行评分。假设评分标准包括逻辑性、相关性和可行性。
    • “回家” 组的两个推理链得分可能较低,因为它们没有直接解决如何避免淋湿的问题。
    • “躲到树下” 和 “跑到商店里” 的推理链得分可能较高,因为它们提供了更直接、更可行的解决方案。
    1. 全局评估: AoR 会从每个答案组中选择得分最高的推理链进行比较。在这个例子中,”躲到树下” 和 “跑到商店里” 的推理链可能会被选中。AoR 会进一步评估这两个推理链,并根据常识判断 “跑到商店里” 可能比 “躲到树下” 更能有效地避免淋湿。
    2. 动态采样: 假设 AoR 在全局评估阶段对 “跑到商店里” 的推理链很有信心 (例如,分数差距远超预设阈值),它就不会生成更多推理链。否则,它会生成更多推理链,例如 “打电话叫出租车” 或者 “借一把伞”,并重复上述评分和评估过程,直到达到预设的置信度。

    最终,AoR 框架会选择 “跑到商店里” 作为最佳答案,因为它能够更准确地理解问题的语义,并生成更合理、更有效的解决方案。

    通过这个例子,我们可以看到 AoR 框架如何通过对推理过程进行更细致的评估和动态调整,克服了传统方法的局限性,从而在复杂推理任务中取得更好的表现。

  • DeepSeek-V2中的MLA详解

    DeepSeek-V2是DeepSeek团队最新发布的MoE(Mixture of Experts)架构的LLM(大型语言模型)底座。该模型拥有236B的总参数量和21B的每个token激活参数量,支持128K tokens的上下文长度。DeepSeek-V2的一个核心创新点就是Multi-head Latent Attention(MLA)。

    Multi-head Latent Attention(MLA)简介

    MLA对传统Transformer中的多头注意力机制(MHA)进行了改进,主要目标是:

    1. 降低推理时KV Cache的存储开销;
    2. 缓解GQA(Grouped-Query Attention)和MQA(Multi-Query Attention)等方法导致的模型性能损耗。

    标准的MHA结构

    在标准的MHA结构中,每个token的query、key和value通过参数矩阵映射得到,并分割成多个注意力头。每个头独立计算注意力权重并得到输出,这个过程虽然能捕捉丰富的上下文信息,但在推理时需要缓存大量的KV Cache。

    MLA如何改进?

    MLA通过对keys和values进行低秩联合压缩来降低KV Cache:

    1. 低秩Key-Value联合压缩
      [
      \mathbf{c}_t^{KV} = W^{DKV} \mathbf{h}_t
      ]
      [
      \mathbf{k}_t^C = W^{UK} \mathbf{c}_t^{KV}
      ]
      [
      \mathbf{v}_t^C = W^{UV} \mathbf{c}_t^{KV}
      ]
      其中,(\mathbf{c}_t^{KV})表示压缩后的隐向量,(W^{DKV})是降维映射矩阵,(W^{UK})和(W^{UV})是升维映射矩阵。在推理时,只需要缓存隐向量(\mathbf{c}_t^{KV}),显著减少了KV Cache的容量。
    2. Queries的低秩压缩
      [
      \mathbf{c}_t^Q = W^{DQ} \mathbf{h}_t
      ]
      [
      \mathbf{q}_t^C = W^{UQ} \mathbf{c}_t^Q
      ]
      这样即便不能减少KV Cache,但可以降低训练过程中的激活内存。

    代码实现

    以下是MLA在DeepSeek-V2中的Python代码实现片段:


    class DeepSeekV2Attention(nn.Module):
    def init(self, config: DeepSeekV2Config, layer_idx: Optional[int] = None):

    self.w_dq = nn.Linear(self.hidden_size, config.q_lora_rank, bias=config.attention_bias)
    self.w_uq = nn.Linear(config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False)
    self.w_dkv = nn.Linear(self.hidden_size, self.dc, bias=config.attention_bias)
    self.w_uk = nn.Linear(self.dc, self.num_heads * self.q_head_dim, bias=False)
    self.w_uv = nn.Linear(self.dc, self.num_heads * self.q_head_dim, bias=False)

    def forward(self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None,
                position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None,
                output_attentions: bool = False, use_cache: bool = False, **kwargs):
        bsz, q_len, _ = hidden_states.size()
    
        q = self.w_uq(self.q_a_layernorm(self.w_dq(hidden_states))).view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
        kv_seq_len = q.size(-2)
        if past_key_value is not None:
            kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
    
        compressed_kv = self.w_dkv(hidden_states)
        if past_key_value is not None:
            compressed_kv = past_key_value.update(compressed_kv)
    
        k = self.w_uk(compressed_kv).view(bsz, -1, self.num_heads, self.q_head_dim).transpose(1, 2)
            v = self.w_uv(compressed_kv).view(bsz, -1, self.num_heads, self.q_head_dim).transpose(1, 2)
    
            attn_weights = torch.matmul(q, k.transpose(2, 3)) * self.softmax_scale
            attn_weights = nn.functional.softmax(attn_weights, dim=-1)
    
            if output_attentions:
                outputs = (attn_weights,)
            else:
                outputs = ()
    
            attn_output = torch.matmul(attn_weights, v)
            attn_output = attn_output.transpose(1, 2).contiguous().view(bsz, q_len, self.hidden_size)
    
            attn_output = self.out_proj(attn_output)
            outputs = (attn_output,) + outputs
    
            if use_cache:
                outputs = outputs + (past_key_value,)
    
            return outputs
    ```
    
    

    结论
    DeepSeek-V2通过引入Multi-head Latent Attention(MLA)结构,成功优化了传统的多头注意力机制(MHA),在保证模型性能的同时,显著降低了推理时KV Cache的存储开销。这不仅提高了模型的效率,也为未来的大模型架构设计提供了新的思路。

    MLA的实现通过对queries、keys和values进行低秩压缩,减少了存储需求,缓解了因GQA和MQA方法导致的性能损耗。这种创新在深度学习模型的设计中具有重要的参考价值。

    如果你对于DeepSeek-V2的MLA结构有更多的兴趣,建议查看其开源代码和详细文档,以便深入理解其工作机制和实现细节。

  • GPT-4o背后的神仙团队

    在OpenAI最近的一场20多分钟的发布会中,GPT-4o正式亮相。然而,这一新发布的模型并未获得所有专家的一致认可。尽管GPT-4o原生支持多模态,但一些业内大佬对其进步似乎并不买账。

    GPT-4o:小升级还是重大突破?

    在OpenAI联合创始人、现已离开的传奇大神AK看来,GPT-4o仅仅是一个文本、音频和视觉组合的模型,可以在一个神经网络中处理所有三种模态,甚至可以在特殊情况下进行实时语音翻译。马老板也认为,这种对GPT-4o的描述更加准确,隐隐透露出一丝酸意。

    然而,当OpenAI CEO Sam Altman转发了开发GPT-4o背后的团队故事后,外界才真正了解到,要实现原生多模态能力,需要一个怎样的神仙团队。

    18人内核团队:开创人机交互新历史

    马斯克曾在采访中表示,OpenAI推出ChatGPT的最大意义在于,创造了一个人机交互的界面,让普通人能用文本与AI交流。而GPT-4o则希望在人机交互的媒介上进一步拓展,除了文本,还包括音频和视觉等。

    要实现这一目标,OpenAI的Omni Team共由18人组成,其中4名华人,几乎都是90后。团队领导Prafulla Dhariwal本科学历的背景也显得尤为特别,他在本科毕业后直接加入OpenAI,参与过强化学习、无监督学习以及Scaling Law等前沿研究,还参与了DALL-E 2、GPT-3、DALL-E 3等关键项目。

    核心成员:多领域天才齐聚

    1. James Betker:负责图像、音频、数据和后期训练等方面,被评价为任何任务都能搞定的多面手。曾在Garmin和谷歌工作过,适应能力和职业道德备受认可。
    2. Rowan Zellers:视频方面的负责人,让模型能够像人类一样观看视频。他博士毕业后直接加入OpenAI,参与了多个关键项目,包括GPT-4。
    3. Alexis Conneau:音频方向的负责人,第一个提出将电影《Her》中Samantha角色复刻到现实中的人。他在谷歌和Meta AI工作过,参与过影响10亿用户的项目,论文曾获EMNLP最佳论文奖。

    华人科学家的贡献

    OpenAI的重要项目中从不缺乏华人的身影,GPT-4o的研发也不例外:

    • Li Jing:北大物理系毕业,MIT博士,曾参与DALL-E和Sora项目。
    • Jiahui Yu:中科大本科,UIUC博士,现为OpenAI感知团队的负责人,曾是谷歌Gemini多模态的负责人。
    • Yu Zhang:上海交大本科,MIT博士,曾在谷歌DeepMind工作。
    • Huiwen Chang:清华大学本科,普林斯顿大学博士,加入OpenAI前在谷歌担任研究科学家。
    • Qiming Yuan:清华大学本科,德州大学奥斯丁分校硕士,负责语言的预训练数据处理,曾在Dropbox和微软工作。

    未来展望

    GPT-4o的推出,不仅展示了OpenAI团队的非凡实力,也揭示了未来人机交互的更多可能性。虽然目前的评价存在争议,但不可否认的是,GPT-4o在多模态处理上的突破,将为人类与AI的交流带来更多新方式和新体验。

    总的来说,这18人的神仙团队,正通过他们的聪明才智和不懈努力,开创人机交互的新历史,将AI的可能性推向新的高度。

    GPT-4o背后的神仙团队:项目负责人为本科学历,北大/清华/交大/中科大校友在列
    dig.chouti.com/link/42443601

  • AI搜索:通向未来的关键一步

    引言:AI搜索的崛起

    近年来,AI搜索已经逐渐成为科技领域的一大热点。从Perplexity的新一轮融资,到ChatGPT将其首页变为搜索框,再到国内秘塔AI搜索和360AI搜索的崛起,这一切都预示着AI搜索正在成为新的行业共识。此外,不少企业也纷纷表示要加入这一领域的竞争,显示出AI搜索的巨大市场潜力和吸引力。

    搜索的市场格局

    搜索技术的发展经历了从狭义的搜索引擎到广义的内容发现的转变。狭义的搜索,如百度搜索和浏览器地址栏,已进入平台期,而广义的搜索,包括内容平台内的搜索功能,正处于上升阶段。随着优质内容的分散,用户的搜索需求也日益增长,推动了AI搜索技术的发展。

    AI搜索的本质

    AI搜索的核心优势在于其能够提供超越传统搜索的内容理解和用户体验。AI搜索不仅仅是关于提升搜索结果的相关性,更关键的是通过深度学习和自然语言处理技术,理解用户的真实意图,并提供更准确、个性化的搜索结果。

    用户使用搜索的真实目的

    用户使用搜索工具的最终目的,往往不仅仅是为了找到一个网址或一个答案,而是为了解决实际问题或获取具体的资源。例如,用户可能需要找到特定的信息进行学习研究,或者寻找特定的视频内容进行观看。AI搜索通过更好的理解用户需求,能够提供更符合用户期待的搜索体验。

    AI搜索的切入点和未来方向

    AI搜索需要找到与传统搜索不同的切入点,这通常意味着在特定的垂直领域或新的使用场景下,发挥AI的独特优势。例如,可以在学术研究或医疗信息查询等领域,通过AI搜索提供更专业、更深入的搜索服务。

    AI搜索与内容平台的关系

    成功的AI搜索引擎将是那些能够与内容平台紧密结合,共同构建强大内容生态系统的引擎。例如,通过与内容创作者和平台合作,AI搜索可以更有效地聚合和推荐内容,从而为用户提供更加丰富和精准的搜索结果。

    结论:AI搜索的战略意义

    AI搜索不仅是技术的革新,更是对用户搜索体验的全面革命。随着技术的不断进步和市场的逐渐成熟,AI搜索将成为连接用户需求与信息世界的关键桥梁。对于企业来说,投入AI搜索技术,开发更智能、更个性化的搜索解决方案,将是抓住未来市场机遇的关键。

    通过对AI搜索的深入理解和应用,我们可以预见一个更加智能和连接的信息时代的到来。

  • AI搜索全解析

    AI搜索,这个听起来颇具科技感的词汇,最近在科技圈里掀起了不小的波澜。从Perplexity获得新融资,到ChatGPT将首页改为搜索框,再到国内AI搜索领域的新星——秘塔AI搜索和360AI搜索的崛起,AI搜索似乎正逐渐成为新的行业共识。在这样的背景下,许多公司也开始摩拳擦掌,准备在AI搜索领域大展拳脚。

    AI搜索的市场格局

    首先,让我们来梳理一下搜索市场的格局。传统搜索,无论是百度的主页还是浏览器的地址栏,其市场已经进入一个相对稳定的平台期。随着优质内容逐渐被各大App如抖音、小红书、知乎等分割,传统搜索的体验虽然成熟,但面临着内容质量下降的挑战。

    然而,广义上的搜索,包括App内的搜索条以及对模型内部知识的搜索,其实正在上升期。用户数和搜索频次都在增加,显示出搜索需求的持续增长。

    AI搜索的本质

    AI搜索的核心在于“智能”,而不仅仅是“搜索”。这意味着,AI搜索需要基于大型语言模型(LLM)和其他工具构建的架构,提供更为精准和个性化的搜索结果。AI搜索的目标是更好地理解用户的Query(查询),并提供端到端的解决方案。

    用户迁移的切入点

    要让用户从传统搜索迁移到AI搜索,需要提供显著的新体验。这不仅仅是在搜索结果上做出微小改进,而是要找到新的使用场景和垂直领域,如学术、医疗、法律等,为用户提供真正有价值的新体验。

    AI搜索与内容平台的关系

    AI搜索与内容平台之间存在密切的依赖关系。长期来看,拥有高质量内容的社区在搜索领域更有可能胜出。例如,百度通过构建知道、百科等内容产品,试图控制内容并构建竞争壁垒。而在移动互联网时代,用户的搜索行为已经逐渐转移到各个App中,这对传统搜索引擎构成了挑战。

    AI搜索的具体应用

    一些AI搜索产品已经开始探索具体的应用场景,如:

    • 思维导图:帮助用户条理化地收集资料,提高研究效率。
    • 学术搜索和播客搜索:通过提高输入内容的质量,提升搜索结果的质量,特别适合学术研究和深度内容消费。
    • 一键生成PPT:利用AI搜索结果直接生成演示文稿,提高工作效率。
    • 资讯、视频、图片搜索:满足用户对传统搜索引擎功能的期待。

    搜索市场的机遇与挑战

    尽管AI搜索来势汹汹,但传统搜索依然有其稳固的市场和价值。搜索引擎依然是互联网流量的重要入口,具有巨大的商业价值。同时,随着技术的发展,新的搜索玩家有机会通过创新的场景和体验来挑战现有的市场格局。

    从AI搜索到AGI

    AI搜索是通往更高级的通用人工智能(AGI)的必经之路。通过更好地理解用户的Query,AI搜索将逐步攻克更多复杂场景,满足用户从信息搜索到内容创作的全方位需求。

    在这个过程中,AI搜索不仅需要技术上的突破,更需要对用户需求深刻的洞察和创新的产品思维。随着AI技术的不断进步,我们有理由相信,AI搜索将为用户带来更加丰富和智能的搜索体验。

  • 谷歌反击:Project Astra正面硬刚GPT-4o、新版Gemini变革搜索

    在5月15日的Google I/O开发者大会上,谷歌展示了一系列令人瞩目的AI技术更新,全面回应了OpenAI的最新动态。以下是对此次发布会的深入评论。

    Project Astra与GPT-4o的对决

    谷歌的Project Astra被视为对OpenAI最新发布的GPT-4o的正面回应。GPT-4o以其实时的语音、视频和文本交互功能引起了广泛关注,而谷歌则通过Astra展示了其在AI助手领域的强大实力。Astra不仅仅是一个语音助手,它融合了多模态能力,可以在各种复杂场景下提供智能支持。这种高端的AI商战,正以最直接的方式在我们眼前上演。

    新版Gemini:搜索引擎的变革

    谷歌在I/O大会上展示了新版Gemini对搜索引擎的革新能力。得益于最新版本的定制化Gemini大模型,搜索引擎不仅能够回答用户的复杂问题,还能利用上下文内容、位置感知和实时信息能力,提供更精确和详细的答案。Gemini通过多步推理功能,简化了用户的搜索流程,使得一次性提出复杂问题成为可能。这不仅节省了时间,还提升了搜索效率。

    多模态与长文本能力的飞跃

    谷歌展示了大模型在多模态和长文本处理方面的进步。例如,Gemini能够总结学校发来的所有电子邮件,并解析PDF等附件内容。这种能力在生产力工具如Google Workspace中得到了体现,使得处理复杂文档和长文本变得更加智能和高效。

    Gemini家族的扩展与优化

    此次发布会上,谷歌还介绍了Gemini家族的新成员,包括1.5 Flash和改进的1.5 Pro。1.5 Flash专注于速度和效率,具有突破性的长上下文窗口(100万token),适用于大规模、高频任务。而1.5 Pro的上下文窗口已经扩展到200万token,进一步提升了代码生成、逻辑推理和多轮对话的能力。这些改进使得Gemini在处理复杂任务和提供智能支持方面更具竞争力。

    未来展望

    谷歌还透露了未来AI助手的发展方向,强调了Agent的推理、计划和记忆能力。通过多步骤思考和跨软件系统的工作,Agent将更便捷地帮助用户完成任务。这种智能系统的应用,不仅在搜索引擎中得到了体现,也将在其他谷歌产品中发挥重要作用。

    总结

    谷歌在此次I/O大会上,通过展示Project Astra、新版Gemini以及其他AI技术,向业界传达了其在生成式AI领域的强大实力。无论是在搜索引擎的革新、生产力工具的智能化,还是多模态和长文本处理能力的提升,谷歌都展示了其技术领导力和创新能力。这场AI技术的角逐,无疑将推动整个行业迈向新的高度。

    通过这些前沿技术的发布,谷歌不仅回应了OpenAI的挑战,更为用户带来了更加智能、高效的数字化体验。未来,随着这些技术的不断发展和应用,我们有理由期待一个更加智能化的世界。

    原文链接:谷歌反击:Project Astra正面硬刚GPT-4o、Veo对抗Sora、新版Gemini变革搜索

  • Project Astra 正面硬刚 GPT-4o!Veo 对抗 Sora!

    近日,谷歌在一年一度的 Google I/O 开发者大会上,正式发布了一系列令人瞩目的人工智能产品和技术更新,回应了 OpenAI 的 GPT-4o 和 Sora。本文将从多个角度对谷歌最新发布的 Project Astra、Veo 以及新版 Gemini 进行评论。

    Project Astra 正面硬刚 GPT-4o

    谷歌在大会上重点介绍了 Project Astra,这是其对 OpenAI 领先的 GPT-4o 的直接回应。Astra 作为一个多模态 AI 模型,展示了在语音、视频和文本交互上的强大能力。这意味着谷歌不仅在技术上与 OpenAI 进行正面对抗,还在实际应用场景中提供了更丰富的功能支持。尤其是在实时拍摄和数据处理方面,Astra 展现出了卓越的性能,这无疑将对市场产生重大影响。

    Veo 对抗 Sora

    与 Astra 类似,Veo 是谷歌推出的另一款重磅产品,专为与 OpenAI 的 Sora 竞争。Veo 的推出标志着谷歌在人工智能助手领域的进一步深化。通过多模态和长文本处理能力,Veo 可以更智能地理解和回应用户需求,进一步提升用户体验。这种增强的交互能力,尤其在生产力工具和日常应用中的表现,预示着 AI 助手将变得更加无所不在且功能强大。

    新版 Gemini 变革搜索体验

    谷歌新版 Gemini 大模型无疑是此次发布会的亮点之一。新版 Gemini 不仅提升了搜索引擎的智能化程度,还扩展了多模态处理能力,使用户能够通过图片、文字和语音进行更复杂的问题搜索。特别是新功能“Ask Photos”,通过简单的询问即可从照片中获取所需信息,大大简化了用户的搜索体验。Gemini 的多步推理功能和长上下文窗口(高达 200 万 token),进一步增强了其在复杂任务处理上的能力,展示了谷歌在 AI 搜索领域的前瞻性和技术实力。

    综合评价

    此次 Google I/O 大会上,谷歌通过 Project Astra、Veo 和新版 Gemini 展示了其在 AI 领域的强大创新力和技术积累。无论是在与 OpenAI 的直接竞争中,还是在提升自身产品生态系统方面,谷歌都展现出了强劲的实力和清晰的战略布局。这些新产品和技术的发布,不仅为用户带来了更多便利和可能性,也将推动整个行业的进一步发展和变革。

    总的来说,谷歌此次发布的 AI 产品和技术,充分展示了其在人工智能领域的领先地位和未来愿景。期待在不久的将来,这些创新能够真正改变我们的生活和工作方式。

    点击阅读原文

  • MLA的潜在表示和StableDiffusion的潜空间的异同

    [latexpage]

    多头潜在注意力(Multi-head Latent Attention, MLA)和Stable Diffusion的潜空间都是现代机器学习和深度学习中的重要概念,尽管它们应用于不同的领域(自然语言处理和图像生成),但它们在处理高维数据和压缩信息方面有一些相似之处。以下是对它们的详细比较:

    1. 潜在表示的概念

    • MLA的潜在表示:
    • 用途: 主要用于自然语言处理中的注意力机制。
    • 实现方式: MLA通过低秩键值联合压缩,将高维的键(Key)和值(Value)向量压缩成低维的潜在向量。这些潜在向量保留了重要的信息,但显著减少了需要存储和处理的数据量。
    • 目标: 通过减少KV缓存的大小,提高推理效率,同时保持模型的性能。
    • Stable Diffusion的潜空间:
    • 用途: 主要用于图像生成任务。
    • 实现方式: Stable Diffusion利用潜在空间(latent space),将图像数据映射到一个低维的潜在表示中。在这个潜在空间中,图像的特征被压缩并表示为潜在变量。这些潜在变量通过扩散模型(diffusion model)生成高质量的图像。
    • 目标: 通过在潜在空间中操作,实现高效的图像生成和变换。

    2. 相似之处

    • 压缩高维数据: 两者都涉及将高维数据压缩成低维的潜在表示,从而减少计算和存储的复杂度。
    • 保留重要信息: 尽管数据被压缩,两者都致力于保留原始数据中的重要信息,以确保生成的结果(无论是文本推理还是图像生成)的质量。
    • 提高效率: 通过压缩数据,两者都能显著提高处理效率。在MLA中,这表现在减少KV缓存大小;在Stable Diffusion中,这表现在更快的图像生成速度。

    3. 不同之处

    • 应用领域:
    • MLA: 主要应用于自然语言处理中的注意力机制,优化语言模型的推理效率。
    • Stable Diffusion: 主要应用于图像生成,通过潜在空间的操作实现高质量图像的生成和变换。
    • 具体实现:
    • MLA: 使用低秩键值联合压缩技术,通过矩阵分解将键和值向量映射到低维空间,并使用解耦旋转位置嵌入来进一步提高效率。
    • Stable Diffusion: 使用扩散模型,通过逐步去噪的方法在潜在空间中生成图像。
    • 处理对象:
    • MLA: 处理的是文本数据中的序列信息,主要关注序列之间的依赖关系和注意力模式。
    • Stable Diffusion: 处理的是图像数据,主要关注空间信息和图像特征的表示。

    结论

    尽管MLA的潜在表示和Stable Diffusion的潜空间在压缩高维数据和提高处理效率方面有相似之处,但它们应用于不同的领域,并且实现方式和处理对象也有所不同。MLA专注于自然语言处理中的注意力机制,而Stable Diffusion则专注于图像生成任务。它们各自的潜在表示技术在其特定应用领域中发挥了重要作用。


    [latexpage]

    在MLA(Multi-head Latent Attention)中,通过低秩键值联合压缩实现了将高维的键(Key)和值(Value)向量压缩成低维的潜在向量,从而保留重要信息并减少存储和处理的数据量。以下是具体实现的步骤和方法:

    1. 低秩矩阵分解

    低秩矩阵分解是实现压缩的核心技术。它通过将高维矩阵分解为两个或多个低维矩阵的乘积来减少数据的维度。具体来说,假设我们有一个高维的键矩阵 ( K. 和一个值矩阵 ( V ),我们可以使用低秩矩阵分解将它们压缩为低维矩阵。

    2. 键和值矩阵的联合压缩

    在MLA中,键和值矩阵 ( K. 和 ( V ) 被联合压缩成潜在向量。这个过程可以通过以下步骤实现:

    • 初始矩阵
    • ( K \in \mathbb{R}^{n \times d_k} ) :键矩阵,维度为 ( n \times d_k )。
    • ( V \in \mathbb{R}^{n \times d_v} ) :值矩阵,维度为 ( n \times d_v )。
    • 低秩分解
    • 将键矩阵 ( K. 和值矩阵 ( V ) 分解成低秩矩阵。假设我们使用秩 ( r ) 进行分解:
      • ( K \approx K_L K_R. ,其中 ( K_L \in \mathbb{R}^{n \times r} ),( K_R \in \mathbb{R}^{r \times d_k} )。
      • ( V \approx V_L V_R. ,其中 ( V_L \in \mathbb{R}^{n \times r} ),( V_R \in \mathbb{R}^{r \times d_v} )。
    • 联合压缩
    • 将键和值矩阵联合表示为潜在向量 ( Z. :
      • ( Z = K_L = V_L \in \mathbb{R}^{n \times r} )。

    通过这种方式,键和值矩阵被压缩到相同的低维潜在空间中。

    3. 潜在向量的使用

    在推理过程中,潜在向量 ( Z. 被用于计算注意力权重和输出:

    • 注意力权重计算
    • 使用低维潜在向量 ( Z. 来计算注意力权重,而不是直接使用高维的键和值向量。这可以通过点积计算或其他注意力机制实现。
    • 加权求和
    • 将计算得到的注意力权重应用于值矩阵 ( V. 的低秩表示 ( V_R ),并进行加权求和,得到最终的输出。

    4. 优势

    • 减少存储需求:通过压缩键和值矩阵,显著减少了KV缓存的大小,从而降低了存储需求。
    • 提高计算效率:低维的潜在向量使得计算注意力权重和输出更加高效,减少了计算复杂度。

    总结

    通过低秩键值联合压缩,MLA成功地将高维的键和值向量压缩成低维的潜在向量。这些潜在向量在保留重要信息的同时,显著减少了需要存储和处理的数据量,从而提高了推理效率和性能。具体而言,低秩矩阵分解技术是实现这一压缩过程的关键,通过将高维矩阵分解为低维矩阵的乘积,达到了有效的压缩效果。

  • 缓存与效果的极限拉扯:从MHA、MQA、GQA到MLA

    [latexpage]

    最近,幻方发布的DeepSeek-V2引发了广泛关注。它不仅以每百万token仅需1块钱的价格震惊了大家,比现有的API便宜了两个数量级,甚至有人开玩笑说:“这个价格哪怕输出乱码,我也会认为是一种艺术。” 从技术报告来看,这样低廉价格背后的关键技术之一是新提出的MLA(Multi-head Latent Attention),这是对GQA的改进。据说这种改进不仅更加高效,还能提高性能,引起了许多读者的兴趣。本文将带大家梳理从MHA、MQA、GQA到MLA的演变过程,并重点介绍MLA的设计思路。

    MHA: 多头注意力

    首先,我们来看看MHA(Multi-Head Attention),即多头注意力。这是经典论文《Attention is All You Need》中提出的一种注意力机制,可以说是当前主流大规模语言模型(LLM)的基础。

    简单来说,多头注意力将输入的向量序列分成多个部分,每部分单独计算注意力,然后再将结果拼接在一起。具体公式如下:

    \[
    \begin{aligned}
    \boldsymbol{o}t &= \left[\boldsymbol{o}_t^{(1)}, \boldsymbol{o}_t^{(2)}, \cdots, \boldsymbol{o}_t^{(h)}\right] \ \boldsymbol{o}_t^{(s)} &= Attention\left(\boldsymbol{q}_t^{(s)}, \boldsymbol{k}{\leq t}^{(s)} ,\boldsymbol{v}_{\leq t}^{(s)}\right) \
    \boldsymbol{q}_i^{(s)} &= \boldsymbol{x}_i\boldsymbol{W}_q^{(s)} \
    \boldsymbol{k}_i^{(s)} &= \boldsymbol{x}_i\boldsymbol{W}_k^{(s)} \
    \boldsymbol{v}_i^{(s)} &= \boldsymbol{x}_i\boldsymbol{W}_v^{(s)}
    \end{aligned}
    \]

    其中,$\boldsymbol{q}_i^{(s)}$,$\boldsymbol{k}_i^{(s)}$,$\boldsymbol{v}_i^{(s)}$分别表示查询、键和值向量,它们是通过与不同的权重矩阵相乘得到的。

    在实际应用中,我们经常设置$d_k = d_v = d / h$,即将向量的维度平均分配到每个头。例如,在LLAMA2-7b模型中,$d=4096$,$h=32$,所以$d_k = d_v = 128$。

    KV缓存的重要性

    在自回归语言模型中,我们可以缓存已计算的$\boldsymbol{k}$和$\boldsymbol{v}$值以供后续使用,这就是所谓的KV Cache。这可以避免重复计算,提高推理效率。然而,KV Cache的大小对GPU显存提出了很高的要求。因此,如何减少KV Cache的大小,同时尽可能保证模型效果,成为了一个重要的研究方向。

    MQA, GQA到MLA的演变

    为了解决KV Cache的问题,研究人员提出了MQA(Multi-Query Attention)、GQA(Grouped Query Attention)等改进方法。MQA通过共享查询向量来减少计算量,而GQA通过分组的方式降低KV Cache的存储需求。这些改进在一定程度上解决了KV Cache的问题,但仍有优化空间。

    MLA(Multi-head Latent Attention)是最新的改进,它在GQA的基础上进一步优化。MLA的设计思路是通过引入潜在变量来更高效地管理注意力机制,从而在减少KV Cache大小的同时,依然保持甚至提升模型的性能。

    结语

    从MHA到MLA,注意力机制不断发展,每一步的改进都在努力平衡计算效率和模型效果。DeepSeek-V2的MLA技术展示了在这一领域的最新进展,预示着未来大规模语言模型在性能和成本上的进一步突破。希望这篇文章能帮助大家更好地理解这些技术背后的原理和演变过程。


    根据DeepSeek-V2论文(https://arxiv.org/pdf/2405.04434),多头潜在注意力(Multi-head Latent Attention, MLA)机制旨在提高推理效率,同时保持高性能。这种机制通过低秩键值联合压缩(Low-rank Key-Value Joint Compression)显著减少了KV缓存,从而在推理过程中提高了效率。以下是对MLA机制的详细

    解析:

    1. 预备知识:标准多头注意力(MHA)

    在解释MLA之前,需要理解标准多头注意力(Multi-Head Attention, MHA)。MHA通过并行计算多个注意力头来捕捉不同的注意力模式,每个注意力头都有独立的查询(Query)、键(Key)和值(Value)向量。具体步骤如下:

    • 输入分割:输入序列被分割成多个头,每个头对应不同的查询、键和值向量。
    • 序列处理:每个头独立处理其对应的查询、键和值向量,通过点积计算注意力权重,并加权求和得到每个头的输出。
    • 头合并:所有头的输出被拼接并通过线性变换生成最终输出。

    MHA的主要问题在于KV缓存的大小,尤其是在长序列推理时,这会显著降低效率。

    2. 低秩键值联合压缩

    MLA通过低秩键值联合压缩来解决上述问题。具体步骤如下:

    • 键值压缩:MLA将键和值向量联合压缩成一个低秩潜在向量,以减少缓存的存储需求。具体实现是通过矩阵分解技术,将高维的键和值向量映射到低维空间。
    • 潜在表示:在低维空间中,键和值向量被表示为潜在向量,这些潜在向量可以在推理阶段快速检索,从而减少计算开销。

    3. 解耦旋转位置嵌入

    为了进一步提高效率,MLA引入了解耦旋转位置嵌入(Decoupled Rotary Position Embedding, RoPE)。这项技术允许在不同注意力头之间共享位置信息,从而减少了计算复杂度。

    4. KV缓存比较

    MLA与传统的MHA相比,显著减少了KV缓存的大小。论文中提到,MLA能够在保持高性能的同时,将KV缓存减少93.3%。这一改进在长序列推理任务中尤为显著,因为KV缓存的减小直接提高了推理速度和效率。

    结论

    MLA机制通过低秩键值联合压缩和解耦旋转位置嵌入,在减少KV缓存的同时,显著提高了推理效率。与传统的MHA相比,MLA在不牺牲性能的前提下,实现了更高的推理效率。这使得DeepSeek-V2能够在保持高性能的同时,显著降低推理成本。

    希望以上解析能帮助你更好地理解MLA机制。如果有更多问题,欢迎随时询问。


    在MLA(Multi-head Latent Attention)中,通过低秩键值联合压缩实现了将高维的键(Key)和值(Value)向量压缩成低维的潜在向量,从而保留重要信息并减少存储和处理的数据量。以下是具体实现的步骤和方法:

    1. 低秩矩阵分解

    低秩矩阵分解是实现压缩的核心技术。它通过将高维矩阵分解为两个或多个低维矩阵的乘积来减少数据的维度。具体来说,假设我们有一个高维的键矩阵 ( K. 和一个值矩阵 ( V ),我们可以使用低秩矩阵分解将它们压缩为低维矩阵。

    2. 键和值矩阵的联合压缩

    在MLA中,键和值矩阵 ( K. 和 ( V ) 被联合压缩成潜在向量。这个过程可以通过以下步骤实现:

    • 初始矩阵
    • ( K \in \mathbb{R}^{n \times d_k} ) :键矩阵,维度为 ( n \times d_k )。
    • ( V \in \mathbb{R}^{n \times d_v} ) :值矩阵,维度为 ( n \times d_v )。
    • 低秩分解
    • 将键矩阵 ( K. 和值矩阵 ( V ) 分解成低秩矩阵。假设我们使用秩 ( r ) 进行分解:
      • ( K \approx K_L K_R. ,其中 ( K_L \in \mathbb{R}^{n \times r} ),( K_R \in \mathbb{R}^{r \times d_k} )。
      • ( V \approx V_L V_R. ,其中 ( V_L \in \mathbb{R}^{n \times r} ),( V_R \in \mathbb{R}^{r \times d_v} )。
    • 联合压缩
    • 将键和值矩阵联合表示为潜在向量 ( Z. :
      • ( Z = K_L = V_L \in \mathbb{R}^{n \times r} )。

    通过这种方式,键和值矩阵被压缩到相同的低维潜在空间中。

    3. 潜在向量的使用

    在推理过程中,潜在向量 ( Z. 被用于计算注意力权重和输出:

    • 注意力权重计算
    • 使用低维潜在向量 ( Z. 来计算注意力权重,而不是直接使用高维的键和值向量。这可以通过点积计算或其他注意力机制实现。
    • 加权求和
    • 将计算得到的注意力权重应用于值矩阵 ( V. 的低秩表示 ( V_R ),并进行加权求和,得到最终的输出。

    4. 优势

    • 减少存储需求:通过压缩键和值矩阵,显著减少了KV缓存的大小,从而降低了存储需求。
    • 提高计算效率:低维的潜在向量使得计算注意力权重和输出更加高效,减少了计算复杂度。

    总结

    通过低秩键值联合压缩,MLA成功地将高维的键和值向量压缩成低维的潜在向量。这些潜在向量在保留重要信息的同时,显著减少了需要存储和处理的数据量,从而提高了推理效率和性能。具体而言,低秩矩阵分解技术是实现这一压缩过程的关键,通过将高维矩阵分解为低维矩阵的乘积,达到了有效的压缩效果。

  • 探索人工智能的未来:从多头注意力到多头潜在注意力

    在人工智能领域,技术的迭代更新速度令人眼花缭乱。最近,幻方科技发布的DeepSeek-V2模型因其创新的多头潜在注意力(MLA)技术而引起了广泛关注。这一技术不仅大幅降低了运算成本,还保持了高效的模型性能,其价格之低让人震惊,足以颠覆现有的市场格局。本文将带您了解从多头注意力(MHA)到多头潜在注意力(MLA)的技术演进历程,以及这一变革对未来人工智能应用的深远影响。

    多头注意力(MHA):AI领域的革命

    多头注意力机制最初由2017年的论文《Attention is all you need》中提出,它是现代大型语言模型的基石。这项技术通过将输入数据分割成多个头部,然后并行处理,能够有效地捕捉数据中的不同方面信息,极大地提升了模型处理复杂数据的能力。

    在多头注意力中,每个头部独立地从数据中学习不同的特征,然后将这些特征综合起来,形成对输入数据的全面理解。这种机制不仅增加了模型的表达能力,还提高了处理速度,是许多先进模型能够实现快速、准确预测的关键。

    缓存机制和性能的平衡

    尽管多头注意力极大地推动了模型性能的提升,但其对计算资源的需求也相应增加。在实际应用中,为了加速预测过程并减少计算资源的消耗,技术人员常常采用键值缓存(KV Cache)技术。这种技术可以存储已经计算过的结果,当需要重复使用时可以直接调用,避免了重复的计算过程。

    然而,KV Cache也有其局限性,特别是在处理大型模型和长输入序列时,其所需的内存量会急剧增加,这对于资源有限的设备是一个不小的挑战。

    多头潜在注意力(MLA):效率与性能的新高度

    为了解决这一问题,幻方科技的DeepSeek-V2模型采用了创新的多头潜在注意力机制。MLA在设计上对传统多头注意力机制进行了优化,通过更高效的数据处理和缓存管理,显著减少了对计算资源的需求。

    具体来说,MLA通过改进算法减少了对内存的依赖,同时确保模型输出的质量不受影响。这一点在资源受限的设备上尤为重要,因为它允许这些设备运行先进的模型,执行复杂的任务,而不会耗尽所有的计算资源。

    MLA技术的核心原理

    多头潜在注意力机制在设计上对传统多头注意力机制进行了重要的改进。核心思想是在保持注意力模型效能的同时,优化内存使用和计算效率。

    1. 参数共享: MLA通过在多个注意力头之间共享部分参数来减少模型的总参数量。这种参数共享不仅减少了内存占用,还有助于加速模型的训练和推理过程。

    2. 动态稀疏性: 与传统的注意力机制每次处理所有数据不同,MLA引入了动态稀疏性。它通过算法智能地选择在每次前向传播中最重要的信息子集,从而减少了不必要的计算负担。

    3. 潜在特征空间: MLA引入了一个潜在特征空间,用于更高效地编码和处理信息。在这个空间中,相似的输入特征会被映射到接近的位置,这样模型就可以通过学习这些潜在关系来提高处理速度和效率。

    MLA的优势与应用

    MLA的设计允许它在多种场景下展现出色的性能和效率,使其成为许多行业的理想选择。

    1. 资源限制环境: 在移动设备和嵌入式系统等资源受限的环境中,MLA通过减少计算量和内存需求,使得复杂的模型得以运行。

    2. 实时处理需求: 对于需要实时数据处理的应用,如自动驾驶和实时翻译,MLA能够提供必要的速度和响应能力。

    3. 大规模模型: 在数据中心和云计算环境中,MLA可以减少大规模模型运行所需的能源和硬件资源,这对于环境的可持续性和运营成本都是重大利好。

    展望未来

    MLA的出现不仅是技术上的一次突破,更是开辟了人工智能在各行各业应用的新可能。从医疗健康、自动驾驶到智能制造,MLA的高效性和经济性将使更多的企业能够利用AI技术解决实际问题,推动社会生产力的进一步提升。

人生梦想 - 关注前沿的计算机技术 acejoy.com