分类: AI

  • 🎤 冻结的智慧:解析Freeze-Omni的低延迟语音对话模型

    🌟 引言:智能对话的崭新篇章

    在人工智能的舞台上,语言模型如同璀璨的明星,闪耀着无与伦比的光芒。随着大型语言模型(LLMs)如GPT系列的迅猛发展,研究者们发现,结合语音输入与输出,能够为人机交互带来前所未有的体验。今天,我们将深入探讨一项新兴技术——Freeze-Omni,这是一种智能且低延迟的语音对话模型,依靠“冻结的”LLM,实现了语音到语音的流畅对话。

    🧊 冻结的力量:模型架构与原理

    🔍 1. Freeze-Omni的结构概述

    Freeze-Omni的核心在于其特殊的架构设计。该模型在训练过程中保持LLM的参数不变,以避免由于数据不足而导致的“灾难性遗忘”现象。Freeze-Omni的架构主要包括:

    • 语音编码器:用于处理输入的语音信号,将其转化为高维特征表示。
    • 文本-语音解码器:将文本信息转化为对应的语音输出。
    • 多任务训练模块:实现双向对话能力,使得模型能够自然地与用户互动。
    graph TD;
        A[语音输入] -->|编码| B[语音编码器]
        B -->|特征映射| C[LLM]
        C -->|生成文本| D[文本-语音解码器]
        D -->|语音输出| E[用户]

    ⚙️ 2. 训练策略的独特性

    为了实现低延迟的语音对话能力,Freeze-Omni采用了三阶段的训练策略:

    • 第一阶段:使用大量的自动语音识别(ASR)数据训练语音编码器,模型学习将语音信号转化为文本。
    • 第二阶段:将训练好的语音编码器与LLM连接,利用文本-语音配对数据进一步训练,同时保持LLM参数不变。
    • 第三阶段:构建多轮问答数据集,训练模型在接收到语音输入时,能够生成文本作为输出。

    通过这些阶段,Freeze-Omni不仅具备了语音输入到文本输出的能力,还能够实现文本输入到语音输出的双向功能。

    🧠 理论分析:模型背后的原理

    🗣️ 语音编码的创新

    Freeze-Omni的语音编码器通过下采样卷积层和Transformer块的组合,实现了对输入语音的快速理解。通过动态块训练方法,模型可以在不同的块大小下提升鲁棒性,从而适应多变的输入信号。

    🔄 语音解码的巧妙设计

    在语音解码方面,Freeze-Omni采用了基于令牌的解码器结构,结合非自回归(NAR)预填充和自回归(AR)生成阶段,能够灵活地将文本转化为语音。这种设计不仅提高了生成速度,还减少了延迟,有效地提升了用户体验。

    💡 双向对话能力的实现

    Freeze-Omni的双向对话能力通过多任务训练实现。模型能够实时检测用户的语音输入,并根据不同的状态(如继续接收、打断等)做出响应。此功能的实现,使得Freeze-Omni在对话中表现得更加自然和流畅。

    📈 实验结果与性能评估

    在实验中,Freeze-Omni的表现令人惊艳。通过对比不同模型的ASR性能,Freeze-Omni在多个评估集上均表现优异,尤其是在中文和英文的识别精度上,显示了其强大的语音理解能力。

    ⏱️ 延迟分析

    根据实验结果,Freeze-Omni的统计延迟平均为745ms,非统计延迟为160-320ms,这些数据表明其在实时对话场景中的可用性。通过优化的网络架构和训练策略,Freeze-Omni能够在保持准确性的同时,实现低延迟的语音对话。

    🎉 结论与未来展望

    Freeze-Omni不仅展示了语音对话模型的前沿发展,还为未来的研究提供了新的思路。未来,研究者们可以考虑引入更多的多任务学习策略,增强模型的多样性和适应性。此外,升级至音频编码器以实现对非语音信号的理解,将进一步拓宽Freeze-Omni的应用场景。

    📚 参考文献

    1. Wang, X. , Li, Y., Fu, C., Xie, L., Li, K., Sun, X., & Ma, L. (2024). Freeze-Omni: A Smart and Low Latency Speech-to-speech Dialogue Model with Frozen LLM. arXiv:2411.00774.
    2. OpenAI. (2023). GPT-4o: A Breakthrough in Multimodal Interaction.
    3. Hugging Face. (2024). Datasets for Speech Processing.
    4. Silero. (2023). Voice Activity Detection.
    5. TiCodec. (2023). A Codec Model for Efficient Speech Synthesis.

  • 当实习生的“恶作剧”遇上AI模型:一场技术与伦理的较量 🤖

    在这个技术飞速发展的时代,AI已经成为了我们生活中不可或缺的一部分。然而,就在这个看似和谐的局面下,一起意想不到的事件却为我们敲响了警钟。让我们一起深入探讨这起发生在字节跳动的事件,看看当一个实习生的“恶作剧”遇上了复杂的技术和伦理问题,会产生怎样的连锁反应。

    🔍 事件背景:一场不和谐的实习

    事情的起因是某高校的博士生田某在字节跳动的商业化技术团队实习。原本应该是一个锻炼与学习的良机,但由于对团队资源分配的不满,田某选择了走上一条“极端”的道路——利用技术漏洞进行破坏。可以说,这是一次典型的“愤怒青年”式的反叛,然而,结果却是对整个团队的巨大打击。

    田某利用了Huggingface(HF)平台的漏洞,将攻击代码写入字节跳动的共享模型中,导致模型训练效果如同过山车般忽高忽低,给团队的工作带来了极大的困扰。想象一下,这就像是一位厨师在做菜时,偷偷往锅里放了盐,结果大家都以为是做的菜太咸了,殊不知是他在捣鬼。

    📉 损失究竟有多大?

    据知情人士透露,田某的恶性攻击持续了两个月,造成了近30位同事的努力化为乌有。虽然传闻称此次事件的损失可能超过千万美元,但内部人士却表示,实际损失并没有那么严重。无论如何,这一事件无疑对字节跳动的声誉和团队士气造成了重创。

    可以说,田某的行为就像是在一场精心策划的演出中,突然闯入了一位不速之客,打乱了整个节奏。这个不速之客的到来,让观众们措手不及,也让演出团队饱受困扰。

    ⚖️ 处理方式:辞退与反思

    对于田某的处理方式,传闻称其“被送进去”,但实际情况是辞退、同步给行业联盟及学校。这样的处理方式虽然看似严厉,但在一定程度上也反映了企业在面对此类事件时的无奈与无助。

    这就像是一场足球比赛,裁判虽然可以对犯规球员出示红牌,但却无法阻止他在比赛中对其他球员的伤害。对于字节跳动而言,这次事件不仅是对内部管理的一次考验,更是对行业道德和技术伦理的一次深刻反思。

    🔧 技术与伦理的碰撞

    事件的背后,其实是技术与伦理之间的复杂关系。随着技术的不断进步,如何在保障技术创新的同时,防范潜在的伦理风险,成为了一个亟待解决的问题。在这一事件中,田某虽是实习生,但其对技术的掌握与应用却让人不禁思考:在AI时代,技术是否真的能够被完全掌控?

    我们可以把技术比作一把双刃剑,既能帮助我们解决问题,也能带来意想不到的后果。如何在这把剑的锋刃上行走,考验的不仅是技术能力,更是道德意识。

    📊 数据安全与管理的挑战

    此次事件还暴露了企业在数据安全与管理方面的挑战。在字节跳动,实习生的权限几乎与正式员工没有太大差别,这让田某的恶性行为得以实施。企业在培养人才的同时,如何有效管理权限,确保数据安全,是一个值得深思的问题。

    以下是关于事件影响的可视化数据:

    graph LR
        A[事件发生] --> B[田某利用技术漏洞]
        B --> C[模型训练效果不稳定]
        C --> D[团队工作受损]
        D --> E[损失估计超过千万]
        E --> F[公司辞退与后续处理]

    🚀 未来的启示:技术伦理的重塑

    通过这起事件,我们不仅看到了技术滥用的潜在风险,也反思了在科技快速发展背景下,如何重塑技术伦理。作为未来的技术工作者,学生们必须在学习技术的同时,培养良好的道德观念。

    在这里,不妨引入一个形象的比喻:就像是驾驶一辆高性能跑车,驾驶者不仅需要掌握操控技巧,更要有安全驾驶的意识。技术的学习与应用,亦应如此。

    结语:一场未完的反思之旅

    总而言之,这起事件不仅是字节跳动内部的一次危机,更是整个科技行业的一次警醒。我们在追求技术创新的同时,不应忽视道德与伦理的重要性。希望通过这次事件,能够促使更多企业在技术管理与人才培养上进行深思熟虑的调整。

    未来的科技之路,或许依然充满荆棘,但只要我们愿意反思与改进,终将迎来更光明的前景。


  • 🦙 Llama中文社区:在中文NLP的海洋中遨游

    欢迎来到Llama中文社区,一个充满活力与创新的地方,专注于Llama模型在中文环境下的优化与应用。就像一只勇敢的羊驼,我们在中文自然语言处理(NLP)的旅程中,探索未知的领域,攀登技术的高峰。今天,我们将带您深入了解Llama中文社区的方方面面,快准备好您的虚拟登山杖,和我们一起探险吧!

    🔥 社区介绍:Llama中文社区

    在Llama中文社区,我们不仅仅是研究者和开发者,更是热爱科技的探索者。我们致力于提升Llama模型在中文处理方面的能力,正如一位细心的园丁,精心浇灌每一株植物,让它们茁壮成长。我们的目标是通过大规模的中文数据对Llama模型进行持续迭代升级,助力中文NLP技术的发展。

    为什么选择Llama中文社区?

    • 🚀 高级工程师团队支持:我们拥有一支经验丰富的NLP高级工程师团队,随时准备为您提供专业的指导与支持。
    • 🎯 中文优化:我们专注于Llama模型的中文处理,探索最佳实践,提升模型性能与适应性。
    • 💡 创新交流:定期组织线上技术研讨与经验分享,促进社区成员间的创新与合作。
    • 🌐 全球联结:欢迎来自世界各地的开发者加入,构建一个开放、多元化的学习交流平台。

    📢 最新动态

    我们的社区动态总是如同一阵清风,时刻更新着。2024年7月24日,Llama 3.1模型正式发布,包含了8B. 70B和405B的强大能力!如果您想了解更多,欢迎访问我们的社区论坛

    重要更新

    • 开源最强Llama 3.1模型发布:您可以从Hugging Face下载最新模型。
    • 支持ollama运行Llama3-Chinese-8B-Instruct:详细使用方法已更新,快来试试吧!
    • 社区增加了llama3 8B中文微调模型:让我们一起探索这个新的可能性!

    🤖 模型

    🔵 中文预训练模型Atom

    在我们的社区中,Atom系列模型如同璀璨的星辰,闪耀着光芒。Atom-7B和Atom-7B-Chat模型基于大规模的中文数据进行持续的预训练,支持商用,并已完全开源。

    类别模型名称🤗模型加载名称下载地址
    预训练Atom-7BFlagAlpha/Atom-7BHuggingFace | ModelScope | WiseModel
    ChatAtom-7B-ChatFlagAlpha/Atom-7B-ChatHuggingFace | ModelScope | WiseModel

    Atom大模型的优化列表,简直就像一份令人垂涎的菜单,包含了大规模中文数据的预训练,更高效的中文词表,甚至可以自适应扩展上下文!

    🍄 模型量化

    在资源有限的情况下,模型的量化如同一把利剑,帮助我们以更少的计算资源实现更高的性能。我们已经上传了13B中文微调模型的4bit压缩版本,您可以从Hugging Face获取。

    🚀 部署加速

    在大模型的推理速度方面,部署加速是我们必须面对的挑战。通过TensorRT-LLM、vLLM和JittorLLMs等推理加速框架,我们可以在有限的算力资源下,提升模型的推理效率,仿佛给模型装上了火箭助推器!

    💪 外延能力

    除了内在的知识储备,我们还在不断丰富大模型的外延能力。集成LangChain框架后,我们可以更方便地基于Llama2开发文档检索、问答机器人等应用,探索更多的可能性。

    🥇 模型评测

    我们会定期对模型进行评测,以确保其在中文问答能力上的卓越表现。通过与Meta原始版Llama2进行对比评测,我们发现基于中文数据进行训练和微调,能够显著提升模型的中文问答能力。

    📖 学习中心

    我们的学习中心提供了丰富的学习资源,包括官方文档、模型评测、相关论文等,帮助社区成员不断提升自己的技术水平。想要深入了解Llama模型的所有秘密,尽在我们的学习中心!

    🎉 致谢

    感谢所有支持Llama中文社区的团队和个人,正是因为有了你们的努力与奉献,我们才能在这条探索之路上越走越远!


    欢迎加入Llama中文社区,让我们一起在中文NLP的辽阔海洋中遨游,探索未知的奥秘!如有问题,请随时在社区论坛中提出,我们期待与您共同探讨与学习。

    参考文献

    1. LLaMA: Open and Efficient Foundation Language Models
    2. Llama 2: Open Foundation and Fine-Tuned Chat Models
    3. Code Llama: Open Foundation Models for Code
    4. Llama中文社区官方文档
    5. Hugging Face模型库
  • 深度学习中的正则化技巧:探索与应用

    近年来,深度学习在各个领域取得了令人瞩目的成就。然而,随着模型复杂度的增加,过拟合问题也变得愈发突出。正则化技术作为解决过拟合问题的关键手段,成为了深度学习研究中的重要课题。本文将结合图中的内容,深入探讨几种常见的正则化方法及其在实际应用中的效果。

    lQDPKd5vI-xo0PXNAWfNAxawo0p3r-Sn1SEGRRiONKkeAA_790_359.jpg

    1. 早停法(Early Stopping)

    图中的第9页详细介绍了早停法,这是一种简单而有效的正则化方法。早停法通过在验证集的性能不再提升时停止训练,防止模型在训练集上过度拟合。第11页展示了早停法的原理图,显示了验证误差随训练次数变化的曲线。通过及时停止训练,早停法能有效避免模型在训练数据上的过度拟合。

    2. L1和L2正则化

    图中的第6页和第7页分别介绍了L1和L2正则化。L1正则化通过在损失函数中加入权重的绝对值和,促使模型产生稀疏权重,有助于特征选择。L2正则化则通过加入权重的平方和,使得权重更平滑,减小模型的复杂度。第13页和第14页展示了L1和L2正则化在不同数据集上的实验结果,验证了其有效性。

    3. Dropout

    Dropout是一种随机去除神经元的正则化方法,图中的第15页至第23页详细介绍了其原理和应用。Dropout通过在训练过程中随机丢弃一部分神经元,迫使模型不依赖于某些特定的路径,从而增强了模型的泛化能力。第18页至第21页的实验结果显示了Dropout在不同复杂度模型上的应用效果,验证了其在防止过拟合方面的显著作用。

    4. 数据增强

    数据增强是一种通过对训练数据进行各种变换来增加数据量的方法,图中的第24页至第26页介绍了几种常见的增强技术,如旋转、平移、缩放等。通过增加数据的多样性,数据增强能有效提高模型的泛化能力。第25页展示了不同数据增强技术的效果对比,说明了数据增强在实际应用中的重要性。

    5. 批归一化(Batch Normalization)

    批归一化通过在每一层网络中对输入数据进行归一化处理,减少了内部协变量偏移,加快了训练速度,并在一定程度上具有正则化效果。图中的第27页至第30页详细介绍了批归一化的原理和在不同网络结构中的应用效果。第29页的实验结果显示,批归一化不仅能加快收敛速度,还能提高模型的最终性能。

    6. 其他正则化方法

    除了上述几种常见的正则化方法,图中的第31页至第37页还介绍了一些其他的正则化技术,如权重剪枝、随机噪声注入等。这些方法通过不同的机制抑制模型的过拟合,增强了模型的泛化能力。第34页和第36页的实验结果展示了这些方法在实际应用中的效果。

    总结

    正则化技术在深度学习中扮演着至关重要的角色,通过合理应用这些方法,研究人员和工程师们能够有效地提高模型的泛化能力,避免过拟合问题。随着深度学习技术的不断发展,相信将会有更多创新的正则化方法被提出,为我们带来更强大、更稳定的模型。

    通过本文的探讨,我们不仅了解了几种常见正则化方法的原理和应用,还通过图中的实验结果看到了它们在实际中的效果。希望这些内容能为读者在深度学习研究和应用中提供有价值的参考。

  • Llama-3-70B:突破性未审查模型

    在人工智能领域,模型的性能和应用范围不断拓展。最近,由Exllama社区的一位成员进行的一次微调,使得Llama-3-70B模型在未审查的通用智能排行榜上名列前茅。这一排行榜是一个封闭的基准,无法通过作弊来提高分数。这一成就不仅让人瞩目,也为未来的AI发展提供了新的方向。

    新模型的诞生

    Llama-3-70B模型的微调由Exllama社区的一名成员完成。这次微调不仅提升了模型的性能,还使其在未审查的通用智能排行榜上夺得了第一名。这一排行榜由其创建者严格维护,确保其真实性和公平性。

    排行榜创建者表示:“大多数我测试的模型在默认模板下表现良好,我猜测是llama.cpp检测到了这个模板。然而,turboderp/Cat-Llama-3-70B-instruct在使用提供的模板时,得分有了显著提升。它的知识量相当惊人,并且在使用聊天模板时几乎没有受到审查。”

    模型的具体表现

    Llama-3-70B模型在使用聊天模板时表现尤为出色。它不仅展示了广泛的知识,还在对话过程中表现出了一种“未审查”的特质。未审查的特质意味着模型能够更加自由地生成内容,而不受严格的限制。这种特性使得模型在实际应用中更加灵活和实用。

    为了充分发挥Llama-3-70B模型的潜力,用户需要使用ChatML格式来运行该模型。此外,系统提示通常使用“Below is a”语句效果更佳,而非“You are”语句。例如,一个好的系统提示可以是:“Below is a conversation between an AI entity and a human.”

    使用指南

    如果您有兴趣探索和使用Llama-3-70B模型,可以在以下链接找到完整精度的模型:

    在运行模型时,请务必使用ChatML格式,并且在系统提示中使用“Below is a”语句。这将确保模型在对话中的最佳表现。

    未来展望

    Llama-3-70B模型的成功不仅是技术上的突破,也是人工智能应用领域的一次重要进步。它展示了通过微调和优化,可以显著提升模型性能,并使其在实际应用中更加灵活和高效。未来,我们可以期待更多类似的创新,为我们的生活带来更多便利和可能性。


    参考文献:

    • Exllama社区成员微调的Llama-3-70B模型
    • 未审查的通用智能排行榜创建者的评论
  • ChatTTS:专为对话场景设计的文本转语音模型

    在人工智能领域中,文本转语音(TTS)技术一直是备受关注的研究方向。今天,我们要介绍的是ChatTTS,一个专为对话场景设计的文本转语音模型。ChatTTS不仅支持中文和英文,还能够在多种应用中展现出色的表现。

    ChatTTS的特点

    对话式TTS

    ChatTTS针对对话任务进行了优化,能够生成自然流畅的语音,并支持多说话人。这使得它在模拟人类对话时,更加真实和生动。

    细粒度控制

    该模型能够预测和控制细粒度的韵律特征,包括笑声、停顿和插入词等。这使得生成的语音更加丰富和多样,能够更好地传达说话者的情感和意图。

    更好的韵律

    ChatTTS在韵律方面超越了大部分开源的TTS模型。它能够生成具有自然韵律的语音,使得听起来更加舒适和真实。同时,ChatTTS还提供预训练模型,支持进一步的研究和应用。

    使用方法

    基本用法

    以下是ChatTTS的基本用法示例:

    import ChatTTS
    from IPython.display import Audio
    
    chat = ChatTTS.Chat()
    chat.load_models()
    
    texts = ["<PUT YOUR TEXT HERE>",]
    
    wavs = chat.infer(texts, use_decoder=True)
    Audio(wavs[0], rate=24_000, autoplay=True)

    进阶用法

    如果需要更高级的控制,可以使用以下代码:

    import torch
    
    # 采样一个说话人
    std, mean = torch.load('ChatTTS/asset/spk_stat.pt').chunk(2)
    rand_spk = torch.randn(768) * std + mean
    
    params_infer_code = {
      'spk_emb': rand_spk,
      'temperature': .3,
      'top_P': 0.7,
      'top_K': 20,
    }
    
    params_refine_text = {
      'prompt': '[oral_2][laugh_0][break_6]'
    }
    
    wav = chat.infer("<PUT YOUR TEXT HERE>", params_refine_text=params_refine_text, params_infer_code=params_infer_code)

    实际应用案例

    智能客服系统

    ChatTTS可以在智能客服系统中发挥重要作用。通过其自然流畅的语音生成能力,能够提供更加亲切和人性化的客服服务,提升客户满意度。

    教育领域

    在教育领域,ChatTTS可以帮助教师制作生动的教学语音材料。学生可以通过听取这些语音材料,更加直观地理解和掌握知识。

    娱乐领域

    在游戏和影视制作中,ChatTTS可以用于生成角色对话。其自然的语音和情感表达能力,可以使角色更加生动,提升用户的沉浸感。

    未来展望

    ChatTTS展示了语音生成技术的巨大潜力。随着技术的不断进步,未来有望在更多的应用场景中发光发热,带给我们更多的惊喜和便利。

    免责声明

    本文件中的信息仅供学术交流使用,目的在于教育和研究,不得用于任何商业或法律目的。作者不保证信息的准确性、完整性或可靠性。

    计划路线

    • [x] 开源4w小时基础模型和spk_stats文件
    • [ ] 开源VQ encoder和Lora训练代码
    • [ ] 在非refine text情况下, 流式生成音频
    • [ ] 开源多情感可控的4w小时版本
    • [ ] ChatTTS.cpp maybe? (欢迎社区PR或独立的新repo)

    常见问题

    连不上HuggingFace

    请使用modelscope的版本,并设置cache的位置。

    我要多少显存?Infer的速度是怎么样的?

    对于30秒的音频,至少需要4G的显存。对于4090D. 1秒生成约7个字所对应的音频,RTF约0.65。

    模型稳定性似乎不够好,会出现其他说话人或音质很差的现象。

    这是自回归模型通常都会出现的问题。说话人可能会在中间变化,可能会采样到音质非常差的结果,这通常难以避免。可以多采样几次来找到合适的结果。

    除了笑声还能控制什么?还能控制其他情感吗?

    在现在放出的模型版本中,只有[laugh]和[uv_break]、[lbreak]作为字级别的控制单元。在未来的版本中我们可能会开源其他情感控制的版本。

    致谢

    • barkXTTSv2valle展示了自回归任务用于TTS任务的可能性。
    • fish-speech一个优秀的自回归TTS模型,揭示了GVQ用于LLM任务的可能性。
    • vocos作为模型中的vocoder。

    特别致谢


    ChatTTS凭借其先进的技术和广泛的应用前景,正在逐步改变我们的生活方式。从智能客服到教育,再到娱乐,ChatTTS的应用无处不在。期待随着技术的进一步发展,ChatTTS能为我们带来更多惊喜和便利。


    参考文献:

    1. ChatTTS GitHub
  • ChatTTS:一个专为对话场景设计的语音生成模型

    近年来,人工智能技术的飞速发展为我们带来了许多创新和便利,其中语音生成技术尤为引人注目。今天,我们要介绍的是一个名为ChatTTS的语音生成模型,它专为对话场景设计,能够在多个应用中展现出色的表现。

    什么是ChatTTS?

    ChatTTS是一种先进的语音生成模型,专门用于对话场景。与传统的语音生成模型不同,ChatTTS不仅关注语音的自然度和流畅度,还特别注重对话中的上下文理解和情感表达。这使得ChatTTS在模仿人类对话方面具有显著优势。

    ChatTTS的技术优势

    上下文理解

    在对话中,理解上下文是至关重要的。ChatTTS通过复杂的算法和深度学习技术,能够准确地捕捉和理解对话中的上下文信息。这使得它在生成语音时,不仅能够准确传达信息,还能保持对话的连贯性。

    情感表达

    人类的对话不仅仅是信息的交换,还包含了丰富的情感。ChatTTS在语音生成时,能够根据对话的内容和情境,适当地调整语音的语调和情感。这使得生成的语音更加生动和真实,增强了用户的互动体验。

    多样化应用

    ChatTTS不仅适用于普通的对话场景,还可以在许多其他领域中发挥作用。例如,在智能客服系统中,ChatTTS可以提供更加自然和亲切的语音服务;在教育领域,ChatTTS可以帮助教师生成生动的教学语音;在娱乐领域,ChatTTS可以用于生成角色对话,提升用户的沉浸感。

    实际应用案例

    智能客服系统

    在智能客服系统中,ChatTTS可以辅助客服人员处理大量的客户咨询。通过其出色的上下文理解能力和情感表达能力,ChatTTS能够生成自然、流畅的语音回复,提升客户的满意度。

    教育领域

    在教育领域,ChatTTS可以帮助教师制作生动的教学语音材料。无论是课前预习还是课后复习,学生都可以通过听取这些语音材料加深对知识的理解。

    娱乐领域

    在游戏和影视制作中,ChatTTS可以用于生成角色对话。其自然的语音和情感表达能力,可以使角色更加生动,提升用户的沉浸感。

    未来展望

    随着人工智能技术的不断进步,语音生成技术将会变得越来越强大和智能。ChatTTS作为这一领域的佼佼者,未来有望在更多的应用场景中发光发热,带给我们更多的惊喜和便利。

    ChatTTS的出现,不仅展示了语音生成技术的巨大潜力,也为我们展望了一个更加智能和便捷的未来。无论是在客服、教育还是娱乐领域,ChatTTS都有着广阔的应用前景,值得我们期待。


    参考文献:

    1. ChatTTS:一个专为对话场景设计的语音生成模型
  • LLMs与多模态生成及编辑:一项综述

    引言

    内容概述

    近年来,随着大型语言模型(LLMs)的快速发展,越来越多的研究开始关注将LLMs与多模态学习相结合。以往的多模态大语言模型(MLLMs)研究主要集中在理解上,而本综述将详细探讨多模态生成领域,涵盖图像、视频、3D和音频等多个领域,并重点介绍这些领域中的里程碑式工作。

    研究范围

    本综述探讨了包括图像、视频、3D模型和音频在内的多种模态的生成。多模态生成包括不同模态的单独生成以及多模态的联合生成。我们不会深入讨论纯文本生成,因为已有许多专门针对该领域进展的综述。我们的主要关注点是近年来出现的大型语言模型如何在生成其他视觉和音频模态方面提供帮助,特别是在开放领域生成中的应用。

    相关研究

    单模态生成综述

    许多综述文章专注于单一模态的生成,例如图像生成[115]、视频生成[116]、3D生成[117]和音频生成[118]。这些研究主要采用预训练的CLIP或T5等语言编码器进行开放领域的文本指导生成。随着LLMs的出现,越来越多的生成工作利用强大的LLMs来增强每种模态的生成能力。我们的工作主要讨论LLMs在各个模态生成中的作用,这是以前的综述中缺乏的。

    LLMs综述

    大量综述文章探讨了LLMs的各个方面。例如,[121]对基于LLMs的自主代理进行了全面审查。此外,[122]和[123]介绍了多模态LLMs,介绍了将LLMs与其他非文本模态结合的论文。这些综述既介绍了多模态理解,也介绍了多模态生成,但主要侧重于多模态理解。相比之下,我们的工作主要集中在生成方面,旨在探讨LLMs在每种模态生成过程中带来的性能和功能改进。

    预备知识

    生成模型

    生成模型可以归纳为从先验分布中抽取潜在样本并将其转换为与目标数据分布对齐的生成样本的过程。以下是几种主要的生成模型:

    1. 生成对抗网络(GANs):GAN由生成器和判别器组成,其中生成器生成假样本,判别器区分真假样本。两者通过博弈论进行训练。[124]
    2. 变分自编码器(VAEs):VAEs包含编码器和解码器,通过潜在空间变量的分布来学习输入数据的表示。[125]
    3. 基于流的模型:这些模型使用一系列可逆变换,将数据分布逐步变换为简单的先验分布。[126]
    4. 扩散模型:扩散模型通过一系列去噪任务实现复杂生成过程,近年来在生成任务中取得了显著进展。[128]
    5. 自回归模型:这些模型通过依赖于过去值来预测未来值,广泛用于时间序列预测、语音合成和自然语言处理。[129]

    多模态对齐模型

    CLIP[23]是一种开创性的图像-语言对齐模型,通过对比学习同时学习图像编码器和文本编码器。它在多个下游任务中表现出色,如物体识别和视频动作识别。CLAP[131]则对齐文本和音频信息,用于文本指导的音频生成。

    大型语言模型

    现代大型语言模型利用Transformer架构生成上下文丰富的嵌入,这些模型在大量文本语料库上进行训练,然后针对特定任务进行微调。[137][138][139][140] 例如,GPT系列模型主要使用Transformer解码器,经过大规模多样化数据集的预训练后,能够生成高质量的文本。

    多模态大型语言模型

    多模态大型语言模型(MLLMs)最近开始兴起,旨在赋予LLMs理解或生成其他模态的能力。这些模型通常包含额外的预训练模态特定编码器,用于特征提取和输入投影,以及与LLM骨干对齐的多模态隐藏特征。[142][143][144][145][146]

    图像生成与编辑

    图像生成

    使用CLIP进行文本指导的图像生成

    过去,图像-文本对齐模型如CLIP[23]在文本指导的图像生成中发挥了重要作用,确保生成的图像与给定的文本提示相符。这些模型通过对齐文本编码器和图像编码器的嵌入,生成与文本描述相匹配的图像。[12][169][200][10][201][202]

    使用LLMs进行文本指导的图像生成

    随着MLLMs的发展,LLMs在视觉内容处理中的应用越来越广泛。MLLMs提供了统一的界面,用于理解和生成文本及视觉信息,增强了生成过程的交互性和可控性。例如,CM3Leon是一种自回归MLLM,能够同时生成文本和图像输出[156]。DreamLLM是第一个能够生成自由形式交错内容的MLLM,支持多轮对话,并且在图像描述和视频问答任务中表现出色[151]。这些模型通过结合视觉和语言信息,显著提高了图像生成的质量和用户体验。

    图像编辑

    使用CLIP/T5进行图像编辑

    CLIP模型支持基于语言的图像编辑,例如SDEdit通过用户输入的描边、草图或掩码生成逼真的图像,并通过文本指令编辑现有图像。[226] DiffusionCLIP[227]和Imagic[231]等方法通过调整预训练的扩散模型来编辑目标图像,展示了出色的编辑能力。

    使用LLMs进行图像编辑

    LLMs提供了强大的基于对话或交互的图像编辑能力。例如,InstructPix2pix通过构建数据元组(原始图像、提示、目标图像),训练模型根据编辑提示编辑图像[242]。CHATEDIT则通过对话进行面部图像编辑,分解为用户编辑请求跟踪、图像编辑和响应生成子任务[243]。这些方法通过结合LLMs强大的文本理解和生成能力,显著提高了图像编辑的精确度和灵活性。

    视频生成与编辑

    视频生成

    使用CLIP进行文本到视频生成

    基于扩散模型和变压器模型的文本到视频生成方法已经取得了显著进展。扩散模型因其训练的简便性成为主流,其中包括像素级和潜在级视频扩散模型。[14][15][16][17] 这些模型通过逐帧生成视频,确保生成的视频与文本提示一致。

    使用LLMs进行文本到视频生成

    最近的一些研究利用MLLMs进行视频生成。例如,VideoPoet利用预训练的自回归变压器模型处理多模态数据,生成时间一致且运动保真度高的视频[69]。MAGVIT-v2探索了MLLMs的标记化技术,将视觉输入转换为离散标记,增强了大型语言模型在图像和视频生成任务中的性能[70]。

    视频编辑

    使用CLIP/T5进行文本指导的视频编辑

    Tune-A-Video提出了一种基于预训练扩散模型的文本指导视频编辑方法,通过对目标视频进行单次调优,实现多种视频编辑功能[246]。Video-P2P和FateZero等方法通过更好的反演技术和注意力图操作,确保在编辑过程中背景保持不变,提高了编辑的时间一致性[248][249]。

    使用LLMs进行文本指导的视频编辑

    目前利用LLMs进行视频编辑的研究相对较少。InstructVid2Vid通过生成合成的视频指令对,提高了可控视频编辑的多样性和现实性[258]。InsV2V扩展了InstructPix2Pix的范式,使用LLMs构建合成数据,用于训练视频编辑模型[257]。

    3D生成与编辑

    3D生成

    使用CLIP/T5进行3D生成

    利用CLIP的多模态表示能力,可以通过文本描述或查询指导3D资产的生成和编辑。Text2Mesh通过预测颜色和局部几何细节,生成符合目标文本提示的3D网格[26]。DreamFusion则利用SDS损失从预训练的文本到图像生成模型中提取3D资产,显著提高了生成质量[41]。

    使用LLMs进行3D生成

    LLMs与3D资产的结合是一个新兴的研究方向,利用LLMs强大的语言理解能力,通过文本指令直接增强3D资产的生成、操作或理解。

    例如,3D-GPT提出了一种训练自由的框架,包含任务调度、概念化和建模代理,通过这些代理,可以生成与语言对应的Blender代码,从而提高最终用户在程序化3D建模中的效率[80]。SceneCraft引入了一个LLM代理,通过生成Blender脚本,将输入的文本查询转换为3D场景[341]。此外,PointLLM结合人类指令处理有色点云,并利用LLMs预测用户问题的响应[342]。

    3D编辑

    使用CLIP/T5进行3D编辑

    Blended-NeRF[344]提出了一种使用CLIP损失修改现有NeRF场景中特定感兴趣区域的框架,允许通过对比学习进行目标区域的编辑。NeRF-Art通过全局-局部对比学习策略,对预训练的NeRF模型进行风格化[27]。TextDeformer通过引入基于雅可比矩阵的网格变形技术,实现了基于文本的几何变形[345]。

    使用LLMs进行3D编辑

    目前,利用LLMs进行3D编辑的方法相对较少。编辑更多地像是LLMs生成的一个子任务。例如,3D-GPT和SceneCraft都可以直接编辑3D资产[80][341]。我们将继续关注LLMs在3D编辑中的最新发展,并在未来进行讨论。

    小结

    通过将CLIP或LLMs与3D资产结合,用户可以用自然语言表达他们的创意意图或期望的修改,简化了交互过程,减少了对专业软件或技术专长的需求。此外,将文本信息整合到3D生成管道中,提高了生成输出的可解释性和可调节性,使用户能够更好地理解和微调结果。

    音频生成、理解与编辑

    领域

    音频生成、理解和编辑领域的研究已经取得了显著的进展。以下是LLMs在这些领域的主要角色:

    LLMs在音频生成、理解和编辑中的角色

    1. 作为骨干(Backbone):LLMs作为复杂系统的核心架构,用于处理文本和音频标记。例如,AudioLM利用离散标记将音频生成看作是语言建模任务[110]。
    2. 作为调节器(Conditioner):LLMs作为文本编码器,将输入文本编码为条件,从而引导系统的响应或输出。例如,TANGO使用FLAN-T5作为文本编码器,生成音频的潜在表示[98]。
    3. 作为标签器(Labeller):LLMs将类别标签转换为音频描述,用于数据增强和自动音频标注。例如,Wu等人通过结合预训练模型和LLMs,改进了自动音频描述[99]。
    4. 作为代理(Agent):LLMs与各种工具进行交互,管理和执行复杂的多维操作。例如,AudioGPT利用ChatGPT作为中心节点,处理音频和语音应用[104]。
    5. LLMs启发的骨干(Inspired Backbone):使用LLMs的架构对离散音频标记进行建模。例如,VALL-E结合自回归和非自回归语言模型对编码标记进行建模[53]。

    音频生成

    音频生成领域的研究重点在于生成多样化和复杂的音频内容。例如,Make-an-Audio 2[100]和WavJourney[105]通过结合多模态方法,实现了高保真音频生成。AudioLM通过将输入音频转换为离散标记,模拟语言建模任务,生成高质量音频[110]。

    音频理解

    音频理解涉及对环境中各种声音的分析和解释,包括识别和分类声音、模式识别以及理解声音的上下文或来源。LTU[85]和SALMONN[91]通过结合LLMs和音频编码器,提高了音频理解的能力。AudioGPT和HuggingGPT通过协调工具,提升了音频理解的交互能力[104][103]。

    音频编辑

    音频编辑涉及对音频元素的实时调整和修改。例如,Loop Copilot结合LLMs和专用AI音乐模型,创建了一个协作人机音乐循环创作的对话界面[107]。

    工具增强的多模态代理

    动机

    LLMs有时无法处理其训练数据中未包含的信息,如实时数据或私人数据。为了克服这些限制,许多研究提出通过API或外部工具增强LLMs,例如检索增强生成(RAG)和视觉基础模型。这些工具可以通过自然语言指令调用,并将结果整合到LLMs的输出中。例如,LLMs可以使用天气API获取某地的当前温度和湿度,并将其用于生成自然语言响应。

    多模态代理通过增强LLMs的功能,使其能够生成和编辑图像、视频和音频,从而实现更自然和多样化的人机交互以及更强大的创意应用。

    方法

    工具增强的LLMs多模态交互框架一般包括三个主要阶段:

    1. 任务规划:LLM作为控制器,将自然语言指令解释为工具调用方案。核心目标是决定使用哪些工具,并为工具准备参数。
    2. 任务执行:主机中包含多个外部多模态工具,例如图像生成、视频编辑或音频合成。工具的调用基于任务规划阶段获得的调用方案。
    3. 响应生成:通过提示LLM,将任务执行的输出生成用户友好的响应。

    现有方法主要分为两类:

    无需训练的方法

    这些方法主要依赖提示工程和上下文学习,以增强LLMs的推理能力。例如,VISPROG和Visual ChatGPT通过生成代码或直接调用视觉基础模型,解决复杂的组合视觉任务[219]。HuggingGPT使用分阶段规划和模型选择,通过调用Hugging Face上的多种模型,整合多模态任务的预测结果[103]。

    指令调优的方法

    这些方法通过训练语言模型更精确地遵循人类指令,从而显著提高了工具使用的能力。例如,GPT4Tools通过自指令生成大量多模态上下文和工具描述,训练LLMs使用工具进行各种视觉任务[402]。ModelScope-Agent结合工具检索模块,增强了开源LLMs的工具使用能力[418]。

    演示

    一些多模态代理不仅开源代码,还发布了在线演示,展示其功能。例如,Visual ChatGPT和HuggingGPT可以生成和编辑图像,并通过调用图像生成或编辑模型(如Stable Diffusion和ControlNet)根据文本提示创建或修改图像[217][103]。InternGPT和ControlLLM通过支持指点设备,增强了交互性,用户可以通过点击选择感兴趣的区域进行编辑[218][407]。

    小结

    工具增强的多模态代理在提升人机交互的自然性和多样性方面具有重要意义。这些方法通过结合外部工具,显著增强了LLMs的能力,但也面临着如何生成多样化和高质量指令语料库以及如何在闭合语料库中训练的模型上进行泛化等挑战。

    生成AI的安全性

    生成模型的安全性问题引起了越来越多的关注,研究主要集中在减少偏见和有害内容的生成、保护版权以及缓解生成模型产生的虚假内容带来的影响。

    攻击与防御

    研究包括基于优化的攻击、提示级别的操作和数据中毒方法:

    1. 基于优化的攻击:展示了对模型性能造成负面影响或诱导偏见和有害输出的对抗技术[430][431]。
    2. 提示级别攻击:揭示了在推理阶段人造输入绕过安全措施并引发不安全输出的风险[440][441]。
    3. 数据中毒方法:暴露了通过注入恶意数据输入操纵模型的可能性[444][445]。

    防御与检测

    防御方法主要包括两种:

    1. 检测机制:不修改模型参数,通过检测机制或操控输入提示上下文来防御。例如,Latent Guard通过在潜在空间中检测不安全输入提示,比传统的黑名单方法更具鲁棒性[449]。
    2. 对齐算法:通过对齐算法将模型与人类偏好或价值观对齐。Proximal Policy Optimization(PPO)算法广泛用于对齐LLMs,Direct Preference Optimization(DPO)和相关方法通过直接从偏好数据中学习对齐,提供了更高效的对齐算法[451][452]。

    此外,生成模型的安全性评估还包括防止多模态生成模型生成虚假内容和嵌入水印的技术,以保护版权[465][466][467]。

    数据集

    为了评估生成AI的安全性,研究人员开发了一系列数据集:

    • SafetyBench:一个多选题数据集,用于评估生成内容的安全性,包含7个安全类别的11,435个条目[468]。
    • GOAT-Bench:评估不安全表情包的多样化话题数据集,包括隐含仇恨言论、性别歧视和网络欺凌等[469]。
    • ToViLaG:专为视觉LLMs设计的数据集,解决生成的不当内容,如冒犯性文本和不适当的图像[470]。

    这些数据集为进一步提高生成模型的安全性提供了全面的评估。

    小结

    通过先进的检测和数据算法技术,生成模型的安全性得到了显著提升。开源项目提供的安全检查功能,为用户提供了更安全的使用体验。水印嵌入和数据追踪技术在保护版权方面也取得了显著进展。采用这些安全技术的公共项目,将增强多模态生成应用的安全性和可信度。

    应用

    图像

    在图像生成领域,扩散模型的发展极大地提高了合成图像的质量和真实性,催生了许多高质量的文本到图像生成工具和多模态条件图像编辑或生成解决方案。例如:

    • Midjourney:提供高质量、真实感强的图像生成工具,广泛应用于内容创作和设计[473]。
    • Stability AI:提供强大的开源生成模型,用户社区开发了各种使用方法,使得图像生成模型得以广泛应用[474]。
    • DALLE-3:集成了图像生成能力到ChatGPT4聊天机器人中,通过文本提示生成和修改图像[152]。

    这些工具通过结合LLMs改进生成图像的质量和用户体验,展示了LLMs在图像生成中的巨大潜力。

    视频

    随着大规模视频生成模型的出现,用户可以通过输入文本描述生成高质量的视频片段。例如:

    • PikaRunway’s Gen2:提供商业化的视频生成工具[478][479]。
    • AnimateDiffVideoCrafter:开源的视频生成模型[20][19]。

    这些工具降低了电影和电视行业的视频制作成本,展示了LLMs在视频生成中的应用前景。

    音频

    在音频生成领域,LLMs的应用已经取得了显著进展,涵盖了文本到语音生成、声音传输、音乐生成等多个方面。例如:

    • Microsoft Azure:在语音生成领域处于领先地位,推动了AI生成声音在短视频平台中的应用[481]。
    • Descript:基于AI的音频和视频编辑工具,可以将音频和视频中的语音转录为文本,用户可以像编辑Word文档一样修改音频和视频[482]。

    此外,音乐生成也是一个热门领域,例如:

    • Suno AI:用户可以通过提供文本提示生成高质量的歌曲[483]。
    • Stability AudioGoogle’s MusicFX:提供音乐生成产品,进一步扩展了音频生成的能力[484][485]。

    3D

    3D模型生成在电影、游戏、工业设计、建筑等领域具有重要应用。例如:

    • MetaEpic Games’ MetaHuman Creator:在3D建模和虚拟现实技术方面取得了显著进展[488][489]。
    • Luma AIAdobe:通过生成3D模型或将2D图像转换为3D模型,简化了3D内容的创建过程[490][491]。

    此外,Wonder Studio提供了强大的AI工具,可以在视频中替换角色,为个性化内容创建提供了新的可能性[493]。

    其他

    AI驱动的软件需要处理各种模态的输入数据,生成AI在数学、法律、教育和机器人等领域的应用前景广阔。例如,AI生成的电影结合3D技术用于视频、音乐和语音生成,与人类艺术家合作,创造高质量的电影体验。

    未来展望

    技术展望

    高分辨率生成

    高分辨率多模态生成在虚拟现实、电影制作等领域至关重要,提高了生成内容的质量和用户体验。LLMs可以通过更好地理解复杂指令和生成更准确、多样化的输出,解决高分辨率生成的挑战。近期在不同模态(如图像、视频、3D和音频)生成方面的进展显著提高了生成内容的质量。未来的研究可以通过结合LLMs,进一步提升高分辨率内容的生成能力。此外,高分辨率内容生成通常需要大量的硬件资源和时间成本,因此高效的生成策略也值得深入研究。

    长期序列生成

    长期序列生成对视频和音频的沉浸式体验至关重要。在视频方面,它可以描绘连续的场景和叙事,而在音频方面,它支持音乐和对话的持续发展。LLMs通过捕捉复杂的模式和依赖关系,生成连贯且上下文相关的长期序列,从而提升生成内容的连贯性和一致性。未来的研究可以通过微调预训练的LLMs,并结合多模态数据集,生成跨不同模态的连贯长序列。

    更精确和细粒度的生成控制

    精确和细粒度的生成控制是AIGC中的一个重要课题。它不仅可以生成更真实和高质量的多模态内容,还可以促进人机交互的有效性。LLMs通过更好地理解控制信号中的细微差别,提高控制信号与生成内容之间的匹配度。例如,在图像或视频中进行文本渲染时,强大的语言模型可以显著提升拼写能力和生成质量。

    多视角一致性

    多视角一致性(MVC)在3D生成中尤为重要,确保对象从不同视角观察时的外观一致性。MVC对增强用户在增强现实(AR)、虚拟现实(VR)和计算机图形学中的体验至关重要。近期的研究在3D生成中引入了稀疏3D先验和扩散采样技术,以增强一致性并解决复杂几何体的生成问题。未来的研究可以结合LLMs,通过提供更多的先验知识,提高多视角一致性和生成质量。

    多模态生成的统一训练

    多模态生成是指同时生成包括图像、视频、3D对象和音频在内的多种模态内容。当前的大多数方法仅关注单一模态的生成,而统一训练多模态生成模型的研究相对较少。通过特征对齐和联合训练,可以实现统一的多模态生成模型,进一步提升生成内容的多样性和连贯性。

    高效的训练和部署策略

    随着数据集和模型规模的不断扩大,高效的训练和部署策略变得愈加重要。低秩近似技术和混合精度训练等方法在加速训练和降低计算成本方面表现出色。未来的研究可以进一步优化这些技术,并探索量化方法以提高推理效率和模型部署的可扩展性。

    伦理安全的内容生成

    生成模型的安全性一直是研究的热点,尤其是视频生成模型的能力不断增强,带来了更多的社会风险。未来的研究需要综合利用检测、对齐和后处理检查技术,确保生成模型的安全性和鲁棒性。

    应用展望

    语义音频合成

    语义音频合成涉及根据语义描述或上下文线索生成音频信号,创造具有特定特征或属性的沉浸式听觉体验。例如,基于文本描述的声音景观或音乐作品可以通过多模态生成模型转化为音频波形,增强多媒体内容的现实感和丰富性。

    多模态叙事

    多模态叙事通过融合不同模态来创造引人入胜的叙事,提供多感官交互。例如,基于文本提示生成图像序列、视频片段或音频叙事,实现更加沉浸式的叙事体验。

    交互式内容设计

    交互式内容设计旨在实时创建和操控媒体元素,使用户能够积极参与创作过程。多模态生成模型通过提供实时的交互和操控能力,提高创作效率和灵活性,降低创作门槛。

    3D场景生成

    3D场景生成在虚拟世界、游戏、仿真和建筑可视化中具有重要应用。多模态生成模型可以通过文本描述或概念草图生成复杂的3D场景,减少手动建模的需求,加速设计过程。

    可定制化虚拟角色

    可定制化虚拟角色是用户可以根据个人偏好和特征进行个性化和调整的数字化身。多模态生成模型通过生成多样化的媒体类型(如图像、文本和音频)来创建逼真的虚拟角色。例如,生成模型可以根据文本描述生成虚拟角色的头像、服饰和表情,并通过语音合成技术使角色能够进行自然的对话。以下是几个具体应用:

    未来展望

    语义音频合成

    语义音频合成涉及根据语义描述或上下文线索生成音频信号,创造具有特定特征或属性的沉浸式听觉体验。多模态生成模型通过结合文本和图像等多模态数据,可以生成更丰富和个性化的音频内容,用于娱乐、教育和虚拟现实等领域。例如,基于文本描述的声音景观或音乐作品可以通过多模态生成模型转化为音频波形,增强多媒体内容的现实感和丰富性。

    多模态叙事

    多模态叙事通过融合不同模态来创造引人入胜的叙事,提供多感官交互。例如,基于文本提示生成图像序列、视频片段或音频叙事,实现更加沉浸式的叙事体验。多模态生成模型支持从文本到图像、视频和音频的多方向合成,使得故事情节更加生动和多样化。

    交互式内容设计

    交互式内容设计旨在实时创建和操控媒体元素,使用户能够积极参与创作过程。多模态生成模型通过提供实时的交互和操控能力,提高创作效率和灵活性,降低创作门槛。例如,用户可以通过文本指令实时生成和编辑图像、视频和音频,快速实现创意。

    3D场景生成

    3D场景生成在虚拟世界、游戏、仿真和建筑可视化中具有重要应用。多模态生成模型通过文本描述或概念草图生成复杂的3D场景,减少手动建模的需求,加速设计过程。例如,设计师可以通过简单的文本描述生成建筑和室内设计的3D模型,快速进行迭代和优化。

    可定制化虚拟角色

    可定制化虚拟角色是用户可以根据个人偏好和特征进行个性化和调整的数字化身。多模态生成模型通过生成多样化的媒体类型(如图像、文本和音频),创建逼真的虚拟角色。例如,生成模型可以根据文本描述生成虚拟角色的头像、服饰和表情,并通过语音合成技术使角色能够进行自然的对话。

    世界模型的未来

    世界模型(World Models)是当前的热门话题,许多研究人员认为世界模型将在不久的将来成为现实。世界模型涉及感知、理解和生成多模态信息,为实现更智能的人工智能系统提供了可能性。以下是几个核心应用:

    多模态教育和沟通

    世界模型在教育和沟通中具有巨大潜力,通过提供多模态学习体验和沉浸式互动,促进学习和交流。例如,学生可以通过虚拟现实和增强现实技术,在沉浸式环境中学习复杂的概念和技能。多模态生成模型可以生成个性化的教育内容,满足不同学习风格和需求。

    电影生成

    世界模型在电影生成中代表了一种范式转变,为电影制作人提供了前所未有的创作自由和灵活性。多模态生成技术使得电影制作人能够无缝整合对话、视觉效果、声音效果和音乐,打造身临其境的电影体验。此外,世界模型可以生成动态和个性化的叙事,满足观众的个性化需求,增强观众的参与感和沉浸感。

    元宇宙

    元宇宙的出现为利用世界模型创建沉浸式和互动的虚拟世界提供了无限可能。通过合成多模态感官体验,包括视觉、听觉和触觉反馈,这些模型能够创建高度真实和沉浸的虚拟环境,模糊物理现实和数字现实之间的界限。此外,世界模型促进了智能虚拟代理和非玩家角色(NPC)的开发,使其表现出逼真的行为和互动,增强了元宇宙中的社交沉浸感。

    结论

    在本综述中,我们系统地回顾了LLMs在多模态生成和编辑中的应用,涵盖了图像、视频、3D和音频等多个领域。通过详细分析这些技术的进展和应用,我们希望为未来的研究提供指导,并推动人工智能在生成内容方面的发展。总的来说,我们期待我们的调查能为多模态生成,特别是世界模型的发展提供洞见和启发,这一领域正逐渐吸引越来越多的研究人员的关注和期待。

    参考文献

    1. OpenAI, “Video generation models as world simulators,” OpenAI, Tech. Rep., 2024.
    2. J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018.
    3. A. Radford, K. Narasimhan, T. Salimans, I. Sutskever et al., “Improving language understanding by generative pre-training,” 2018.
    4. A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., “Language models are unsupervised multitask learners,” OpenAI blog, vol. 1, no. 8, p. 9, 2019.
    5. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901, 2020.
    6. J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman, S. Anadkat et al., “GPT-4 technical report,” arXiv preprint arXiv:2303.08774, 2023.
    7. OpenAI, “ChatGPT: A language model for conversational AI,” OpenAI, Tech. Rep., 2023.
    8. Y. Li, C. Wang, and J. Jia, “LLaMA-VID: An image is worth 2 tokens in large language models,” arXiv preprint arXiv:2311.17043, 2023.
    9. P. Gao, J. Han, R. Zhang, Z. Lin, S. Geng, A. Zhou, W. Zhang, P. Lu, C. He, X. Yue et al., “LLaMA-Adapter V2: Parameter-efficient visual instruction model,” arXiv preprint arXiv:2304.15010, 2023.
    10. R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer, “High-resolution image synthesis with latent diffusion models,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 10684–10695.
    11. A. Nichol, P. Dhariwal, A. Ramesh, P. Shyam, P. Mishkin, B. McGrew, I. Sutskever, and M. Chen, “GLIDE: Towards photorealistic image generation and editing with text-guided diffusion models,” arXiv preprint arXiv:2112.10741, 2021.
    12. A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchical text-conditional image generation with CLIP latents,” arXiv preprint arXiv:2204.06125, vol. 1, no. 2, p. 3, 2022.
    13. C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton, K. Ghasemipour, R. Gontijo Lopes, B. Karagol Ayan, T. Salimans et al., “Photorealistic text-to-image diffusion models with deep language understanding,” Advances in Neural Information Processing Systems, vol. 35, pp. 36479–36494, 2022.
    14. Y. He, T. Yang, Y. Zhang, Y. Shan, and Q. Chen, “Latent video diffusion models for high-fidelity long video generation,” arXiv preprint arXiv:2211.13221, 2022.
    15. D. Zhou, W. Wang, H. Yan, W. Lv, Y. Zhu, and J. Feng, “MagicVideo: Efficient video generation with latent diffusion models,” arXiv preprint arXiv
    16. U. Singer, A. Polyak, T. Hayes, X. Yin, J. An, S. Zhang, Q. Hu, H. Yang, O. Ashual, O. Gafni et al., “Make-a-video: Text-to-video generation without text-video data,” arXiv preprint arXiv:2209.14792, 2022.
    17. J. Ho, W. Chan, C. Saharia, J. Whang, R. Gao, A. Gritsenko, D. P. Kingma, B. Poole, M. Norouzi, D. J. Fleet et al., “Imagen video: High definition video generation with diffusion models,” arXiv preprint arXiv:2210.02303, 2022.
    18. R. Villegas, M. Babaeizadeh, P.-J. Kindermans, H. Moraldo, H. Zhang, M. T. Saffar, S. Castro, J. Kunze, and D. Erhan, “Phenaki: Variable length video generation from open domain textual descriptions,” in International Conference on Learning Representations, 2022.
    19. H. Chen, M. Xia, Y. He, Y. Zhang, X. Cun, S. Yang, J. Xing, Y. Liu, Q. Chen, X. Wang et al., “VideoCrafter1: Open diffusion models for high-quality video generation,” arXiv preprint arXiv:2310.19512, 2023.
    20. Y. Guo, C. Yang, A. Rao, Y. Wang, Y. Qiao, D. Lin, and B. Dai, “AnimateDiff: Animate your personalized text-to-image diffusion models without specific tuning,” arXiv preprint arXiv:2307.04725, 2023.
    21. O. Bar-Tal, H. Chefer, O. Tov, C. Herrmann, R. Paiss, S. Zada, A. Ephrat, J. Hur, Y. Li, T. Michaeli et al., “Lumiere: A space-time diffusion model for video generation,” arXiv preprint arXiv:2401.12945, 2024.
    22. R. Girdhar, M. Singh, A. Brown, Q. Duval, S. Azadi, S. S. Rambhatla, A. Shah, X. Yin, D. Parikh, and I. Misra, “Emu Video: Factorizing text-to-video generation by explicit image conditioning,” arXiv preprint arXiv:2311.10709, 2023.
    23. A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin, J. Clark et al., “Learning transferable visual models from natural language supervision,” in International Conference on Machine Learning. PMLR, 2021, pp. 8748–8763.
    24. A. Sanghi, H. Chu, J. G. Lambourne, Y. Wang, C.-Y. Cheng, M. Fumero, and K. R. Malekshan, “Clip-forge: Towards zero-shot text-to-shape generation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 18603–18613.
    25. N. Mohammad Khalid, T. Xie, E. Belilovsky, and T. Popa, “Clip-Mesh: Generating textured meshes from text using pretrained image-text models,” in SIGGRAPH Asia 2022 Conference Papers, 2022, pp. 1–8.
    26. O. Michel, R. Bar-On, R. Liu, S. Benaim, and R. Hanocka, “Text2Mesh: Text-driven neural stylization for meshes,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 13492–13502.
    27. C. Wang, R. Jiang, M. Chai, M. He, D. Chen, and J. Liao, “NeRF-Art: Text-driven neural radiance fields stylization,” IEEE Transactions on Visualization and Computer Graphics, 2023.
    28. B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drett28. B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis, “3D Gaussian Splatting for Real-Time Radiance Field Rendering,” ACM Transactions on Graphics, vol. 42, no. 4, July 2023. [Online]. Available: https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
    29. T. Yi, J. Fang, J. Wang, G. Wu, L. Xie, X. Zhang, W. Liu, Q. Tian, and X. Wang, “GaussianDreamer: Fast Generation from Text to 3D Gaussians by Bridging 2D and 3D Diffusion Models,” arXiv preprint arXiv:2310.08529, 2023.
    30. J. Tang, J. Ren, H. Zhou, Z. Liu, and G. Zeng, “DreamGaussian: Generative Gaussian Splatting for Efficient 3D Content Creation,” arXiv preprint arXiv:2309.16653, 2023.
    31. L. Höllein, A. Cao, A. Owens, J. Johnson, and M. Nießner, “Text2Room: Extracting Textured 3D Meshes from 2D Text-to-Image Models,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2023, pp. 7909–7920.
    32. Y. Liang, X. Yang, J. Lin, H. Li, X. Xu, and Y. Chen, “LucidDreamer: Towards High-Fidelity Text-to-3D Generation via Interval Score Matching,” arXiv preprint arXiv:2311.11284, 2023.
    33. X. Yu, Y.-C. Guo, Y. Li, D. Liang, S.-H. Zhang, and X. Qi, “Text-to-3D with Classifier Score Distillation,” arXiv preprint arXiv:2310.19415, 2023.
    34. W. Li, R. Chen, X. Chen, and P. Tan, “SweetDreamer: Aligning Geometric Priors in 2D Diffusion for Consistent Text-to-3D,” arXiv preprint arXiv:2310.02596, 2023.
    35. Z. Wang, C. Lu, Y. Wang, F. Bao, C. Li, H. Su, and J. Zhu, “ProlificDreamer: High-Fidelity and Diverse Text-to-3D Generation with Variational Score Distillation,” arXiv preprint arXiv:2305.16213, 2023.
    36. J. Lorraine, K. Xie, X. Zeng, C.-H. Lin, T. Takikawa, N. Sharp, T.-Y. Lin, M.-Y. Liu, S. Fidler, and J. Lucas, “ATT3D: Amortized Text-to-3D Object Synthesis,” in International Conference on Computer Vision ICCV, 2023.
    37. J. Xu, X. Wang, W. Cheng, Y.-P. Cao, Y. Shan, X. Qie, and S. Gao, “Dream3D: Zero-Shot Text-to-3D Synthesis Using 3D Shape Prior and Text-to-Image Diffusion Models,” arXiv preprint arXiv:2212.14704, 2023.
    38. J. Zhu and P. Zhuang, “HiFA: High-Fidelity Text-to-3D with Advanced Diffusion Guidance,” arXiv preprint arXiv:2305.18766, 2023.
    39. R. Chen, Y. Chen, N. Jiao, and K. Jia, “Fantasia3D: Disentangling Geometry and Appearance for High-Quality Text-to-3D Content Creation,” in Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2023.
    40. C. Tsalicoglou, F. Manhardt, A. Tonioni, M. Niemeyer, and F. Tombari, “TextMesh: Generation of Realistic 3D Meshes from Text Prompts,” arXiv preprint arXiv:2304.12439, 2023.
    41. B. Poole, A. Jain, J. T. Barron, and B. Mildenhall, “DreamFusion: Text-to-3D using 2D Diffusion,” arXiv preprint arXiv:2209.14988, 2022.
    42. C. -H. Lin, J. Gao, L. Tang, T. Takikawa, X. Zeng, X. Huang, K. Kreis, S. Fidler, M.-Y. Liu, and T.-Y. Lin, “Magic3D: High-Resolution Text-to-3D Content Creation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 300–309.
    43. J. Seo, W. Jang, M.-S. Kwak, J. Ko, H. Kim, J. Kim, J.-H. Kim, J. Lee, and S. Kim, “Let 2D Diffusion Model Know 3D-Consistency for Robust Text-to-3D Generation,” arXiv preprint arXiv:2303.07937, 2023.
    44. H. Liu, Z. Chen, Y. Yuan, X. Mei, X. Liu, D. Mandic, W. Wang, and M. D. Plumbley, “AudioLDM: Text-to-Audio Generation with Latent Diffusion Models,” arXiv preprint arXiv:2301.12503, 2023.
    45. H. Liu, Q. Tian, Y. Yuan, X. Liu, X. Mei, Q. Kong, Y. Wang, W. Wang, Y. Wang, and M. D. Plumbley, “AudioLDM 2: Learning Holistic Audio Generation with Self-Supervised Pretraining,” arXiv preprint arXiv:2308.05734, 2023.
    46. F. Kreuk, G. Synnaeve, A. Polyak, U. Singer, A. Défossez, J. Copet, D. Parikh, Y. Taigman, and Y. Adi, “AudioGen: Textually Guided Audio Generation,” arXiv preprint arXiv:2209.15352, 2022.
    47. A. Agostinelli, T. I. Denk, Z. Borsos, J. Engel, M. Verzetti, A. Caillon, Q. Huang, A. Jansen, A. Roberts, M. Tagliasacchi et al., “MusicLM: Generating Music from Text,” arXiv preprint arXiv:2301.11325, 2023.
    48. J. Copet, F. Kreuk, I. Gat, T. Remez, D. Kant, G. Synnaeve, Y. Adi, and A. Défossez, “Simple and Controllable Music Generation,” Advances in Neural Information Processing Systems, vol. 36, 2024.
    49. S. Forsgren and H. Martiros, “Riffusion-stable diffusion for real-time music generation, 2022,” URL https://riffusion.com/about, vol. 6, 2022.
    50. X. Tan, J. Chen, H. Liu, J. Cong, C. Zhang, Y. Liu, X. Wang, Y. Leng, Y. Yi, L. He et al., “NaturalSpeech: End-to-End Text-to-Speech Synthesis with Human-Level Quality,” IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024.
    51. K. Shen, Z. Ju, X. Tan, Y. Liu, Y. Leng, L. He, T. Qin, S. Zhao, and J. Bian, “NaturalSpeech 2: Latent Diffusion Models Are Natural and Zero-Shot Speech and Singing Synthesizers,” arXiv preprint arXiv:2304.09116, 2023.
    52. Z. Ju, Y. Wang, K. Shen, X. Tan, D. Xin, D. Yang, Y. Liu, Y. Leng, K. Song, S. Tang et al., “NaturalSpeech 3: Zero-Shot Speech Synthesis with Factorized Codec and Diffusion Models,” arXiv preprint arXiv:2403.03100, 2024.
    53. C. Wang, S. Chen, Y. Wu, Z. Zhang, L. Zhou, S. Liu, Z. Chen, Y. Liu, H. Wang, J. Li et al., “Neural Codec Language Models Are Zero-Shot Text to Speech Synthesizers,” arXiv preprint arXiv:2301.02111, 2023.
    54. Z. Jiang, J. Liu, Y. Ren, J. He, C. Zhang, Z. Ye, P. Wei, C. Wang, X. Yin, Z. Ma et al., “Mega-TTS 2: Zero-Shot Text-to-Speech with Arbitrary Length Speech Prompts,” arX55. Y. Ren, C. Hu, X. Tan, T. Qin, S. Zhao, Z. Zhao, and T.-Y. Liu, “FastSpeech 2: Fast and High-Quality End-to-End Text to Speech,” arXiv preprint arXiv:2006.04558, 2020.
    55. Y. Ge, Y. Ge, Z. Zeng, X. Wang, and Y. Shan, “Planting a Seed of Vision in Large Language Model,” arXiv preprint arXiv:2307.08041, 2023.
    56. L. Zeqiang, Z. Xizhou, D. Jifeng, Q. Yu, and W. Wenhai, “Mini-DALLE3: Interactive Text to Image by Prompting Large Language Models,” arXiv preprint arXiv:2310.07653, 2023.
    57. Z. Tang, Z. Yang, M. Khademi, Y. Liu, C. Zhu, and M. Bansal, “CoDi-2: In-Context, Interleaved, and Interactive Any-to-Any Generation,” arXiv preprint arXiv:2311.18775, 2023.
    58. Y. Ge, S. Zhao, Z. Zeng, Y. Ge, C. Li, X. Wang, and Y. Shan, “Making LLaMA See and Draw with SEED Tokenizer,” arXiv preprint arXiv:2310.01218, 2023.
    59. Q. Sun, Y. Cui, X. Zhang, F. Zhang, Q. Yu, Z. Luo, Y. Wang, Y. Rao, J. Liu, T. Huang et al., “Generative Multimodal Models Are In-Context Learners,” arXiv preprint arXiv:2312.13286, 2023.
    60. X. Zhao, B. Liu, Q. Liu, G. Shi, and X.-M. Wu, “Making Multimodal Generation Easier: When Diffusion Models Meet LLMs,” arXiv preprint arXiv:2310.08949, 2023.
    61. J. Chen, Y. Huang, T. Lv, L. Cui, Q. Chen, and F. Wei, “TextDiffuser-2: Unleashing the Power of Language Models for Text Rendering,” arXiv preprint arXiv:2311.16465, 2023.
    62. L. Lian, B. Li, A. Yala, and T. Darrell, “LLM-Grounded Diffusion: Enhancing Prompt Understanding of Text-to-Image Diffusion Models with Large Language Models,” arXiv preprint arXiv:2305.13655, 2023.
    63. W. Feng, W. Zhu, T.-j. Fu, V. Jampani, A. Akula, X. He, S. Basu, X. E. Wang, and W. Y. Wang, “LayoutGPT: Compositional Visual Planning and Generation with Large Language Models,” arXiv preprint arXiv:2305.15393, 2023.
    64. T. Zhang, Y. Zhang, V. Vineet, N. Joshi, and X. Wang, “Controllable Text-to-Image Generation with GPT-4,” arXiv preprint arXiv:2305.18583, 2023.
    65. L. Qu, S. Wu, H. Fei, L. Nie, and T.-S. Chua, “LayoutLLM-T2I: Eliciting Layout Guidance from LLM for Text-to-Image Generation,” in Proceedings of the 31st ACM International Conference on Multimedia, 2023, pp. 643–654.
    66. Y. Li, H. Liu, Q. Wu, F. Mu, J. Yang, J. Gao, C. Li, and Y. J. Lee, “GLIGEN: Open-Set Grounded Text-to-Image Generation,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 22511–22521.
    67. J. Betker, G. Goh, L. Jing, T. Brooks, J. Wang, L. Li, L. Ouyang, J. Zhuang, J. Lee, Y. Guo et al., “Improving Image Generation with Better Captions,” Computer Science. https://cdn.openai.com/papers/dall-e-3.pdf, 2023.
  • LLMs Meet Multimodal Generation and Editing: A Survey 

    在当今这个信息爆炸的时代,人工智能(AI)正以前所未有的速度发展,其中大型语言模型(LLMs)尤为引人注目。这些模型不仅在文本理解方面取得了巨大进步,而且在多模态学习——即结合图像、视频、3D模型和音频等多种信息形式的学习——方面也展现出了巨大潜力。最近,我有幸阅读了一篇关于这一主题的综述文章,现在,我将尝试以通俗易懂的语言,向您介绍这篇综述的精髓。

    LLMs与多模态生成:一次革命性的邂逅

    首先,让我们来谈谈什么是大型语言模型(LLMs)。想象一下,如果你有一个能够理解和生成人类语言的超级助手,那么这个助手就是基于LLMs的。这些模型通过分析大量的文本数据来学习语言的规律,从而能够完成诸如回答问题、撰写文章甚至生成代码等任务。

    然而,LLMs的野心不止于此。研究人员发现,当LLMs与多模态学习结合时,它们能够做的事情远远超出了我们的想象。多模态学习意味着模型不仅要处理文本,还要处理图像、视频、3D模型和音频等其他类型的数据。这种结合为AI开辟了新的可能性,使得机器能够更全面地理解和响应我们的世界。

    多模态生成的里程碑

    在这篇综述中,作者们详细探讨了LLMs在多模态生成领域的应用,包括以下几个方面:

    1. 图像生成:通过文本提示生成图像,比如你告诉模型“生成一张日落的图片”,它就能创造出一幅美丽的日落景象。
    2. 视频生成:类似地,模型可以根据文本描述生成视频内容,这对于电影制作和游戏开发等领域具有重要意义。
    3. 3D生成:LLMs可以帮助生成3D模型,这对于虚拟现实(VR)和增强现实(AR)应用来说是一个巨大的突破。
    4. 音频生成:模型还能够根据文本描述生成音频,无论是音乐、自然声音还是人声,都能够被创造出来。

    LLMs如何工作?

    那么,这些模型是如何工作的呢?简单来说,它们通过以下步骤:

    1. 理解:首先,LLMs需要理解输入的文本描述。
    2. 规划:然后,它们会规划如何将这些描述转换成相应的图像、视频、3D模型或音频。
    3. 生成:最后,模型会利用其学习到的知识生成最终的内容。

    安全性和未来展望

    随着LLMs的能力越来越强,安全性也成为一个重要议题。我们需要确保这些模型不会被用于制造虚假信息或有害内容。此外,随着技术的发展,我们期待看到更多创新的应用,比如在教育、娱乐和设计等领域。

    结语

    LLMs与多模态生成的结合,不仅仅是AI领域的一次技术飞跃,更是为我们打开了一扇通往全新世界的大门。随着研究的深入,我们有理由相信,未来的AI将更加智能、更加安全,也更加贴近我们的生活。让我们拭目以待,AI将如何继续改变我们的世界。

  • LLMs与多模态生成及编辑:一项综述

    引言

    随着大型语言模型(LLMs)的快速发展,越来越多的研究开始关注将LLMs与多模态学习相结合。多模态学习旨在融合各种信息源,如图像、视频、3D模型和音频,以实现更丰富、更加自然的人机交互。然而,以往的研究主要集中在多模态理解上,本综述将重点放在多模态生成领域,包括图像、视频、3D和音频等。

    主要内容概述

    多模态生成的背景

    人类与物理世界的交互涉及多种模态信息,如语言、视觉和音频。为了实现世界模拟器,模型需要灵活地感知和响应多模态信息。通过结合LLMs和多模态生成技术,我们可以实现更智能、更灵活的生成系统。

    关键技术组件

    在多模态生成领域,以下是几项关键的技术组件:

    • 多模态数据集:不同模态的数据集是支撑多模态生成研究的基础。
    • 生成模型:包括扩散模型、变换器和其他生成技术,它们在多模态生成中发挥了重要作用。
    • 工具辅助多模态代理:这些代理能够利用现有的生成模型进行人机交互,提升生成效果。

    多模态生成技术的进展

    图像生成

    在图像生成方面,LLMs的应用已经取得了显著的进展。例如:

    • DALL-E:通过文本描述生成高质量的图像。[150]
    • Latent Diffusion Models (LDM):通过潜在空间中的扩散过程生成图像。[10]

    视频生成

    视频生成方面的研究同样取得了重要进展,包括:

    • VideoCrafter:一种高质量的视频生成模型。[19]
    • Make-A-Video:通过文本描述生成视频。[16]

    3D生成

    在3D生成领域,LLMs被用于生成和编辑3D模型。例如:

    • CLIP:一种基于文本描述生成3D模型的技术。[23]
    • ShapeGPT:结合LLMs生成复杂的3D形状。[306]

    音频生成

    音频生成方面,LLMs主要用于生成和编辑音乐、语音等音频内容。例如:

    • AudioLM:通过语言模型生成音频。[110]
    • WavJourney:基于语义描述生成音频信号。[105]

    AI安全性

    在多模态生成领域,AI安全性是一个重要的问题。为了减少有害和偏见内容的生成,研究者们提出了多种方法:

    • Latent Guard:一种保护模型免受攻击的方法。[449]
    • SafetyBench:用于评估多模态模型安全性的数据集。[468]

    未来发展方向

    为了推动多模态生成技术的发展,未来的研究可以探索以下几个方向:

    • 高分辨率生成:提高生成内容的分辨率,以满足虚拟现实和电影制作等领域的需求。
    • 长期序列生成:生成更长的视频和音频序列,创造沉浸式体验。
    • 多视角一致性:确保3D对象从不同视角观察时的一致性。
    • 统一训练的多模态生成:实现单一模型生成多种模态内容的能力。

    结语

    本综述系统性地回顾了LLMs在多模态生成中的应用,涵盖了图像、视频、3D和音频等多个领域。通过详细分析这些技术的进展和应用,我们希望为未来的研究提供指导,并推动人工智能在生成内容方面的发展。

    参考文献

    [1] Yingqing He, Zhaoyang Liu, Jingye Chen, Zeyue Tian, Hongyu Liu, Xiaowei Chi, Runtao Liu, Ruibin Yuan, Yazhou Xing, Wenhai Wang, Jifeng Dai, Yong Zhang, Wei Xue, Qifeng Liu, Yike Guo, Qifeng Chen, “LLMs Meet Multimodal Generation and Editing: A Survey.” Available at: https://github.com/YingqingHe/Awesome-LLMs-meet-Multimodal-Generation

人生梦想 - 关注前沿的计算机技术 acejoy.com