分类: AI

  • 合成数据:人工智能训练的新利器

    导语:

    人工智能聊天机器人的背后需要海量高质量数据作为支撑。传统上,人工智能系统依赖于从各种网络来源(如文章、书籍和在线评论)中提取的大量数据来理解用户的查询并生成响应。

    长期以来,如何获取更多的高质量数据成为人工智能公司的一大挑战。由于数据在互联网上的可用性是有限的,这促使人工智能公司正寻求一种替代解决方案——合成数据(Synthetic data)。

    合成数据:人工智能训练的新利器

    合成数据,即人工智能系统生成的人工数据。科技公司通过利用自己的人工智能模型,生成合成数据(这也被认为是虚假数据),然后将这些数据用以训练其系统的未来迭代。

    谈及合成数据是如何生成的,其过程包括为人工智能模型设置特定参数和提示以创建内容,这种方法可以更精确地控制用于训练人工智能系统的数据。

    例如,微软的研究人员向人工智能模型列出了四岁孩子能够理解的3000个词汇,然后,他们要求该模型使用词汇表中的一个名词、一个动词和一个形容词来创造一个儿童故事。通过几天时间内数百万次的重复提示,模型最终产生了数百万个短篇故事。

    虽然计算中的合成数据并不是一个新概念,但生成式人工智能的兴起促进了大规模创建更高质量的合成数据。

    人工智能初创公司Anthropic首席执行官Dario Amodei将这种方法称为“无限数据生成引擎”,旨在避免与传统数据采集方法相关的一些版权、隐私等问题。

    现有用例与分歧观点

    目前,Meta、谷歌和微软等主要人工智能公司已经开始使用合成数据开发高级模型,包括聊天机器人和语言处理器。

    例如,Anthropic使用合成数据为其聊天机器人Claude提供动力;谷歌DeepMind则使用这种方法来训练能够解决复杂几何问题的模型;与此同时,微软已经公开了使用合成数据开发的小型语言模型。

    有支持者认为,如果适当实施,合成数据可以产生准确可靠的模型。

    然而,一些人工智能专家对与合成数据相关的风险表示担忧。著名大学的研究人员观察到了“模型崩溃”的例子,即在合成数据上训练的人工智能模型出现了不可逆转的缺陷,并产生了荒谬的输出。此外,有人担心合成数据可能会加剧数据集的偏差和错误。

    剑桥大学博士Zakhar Shumaylov在一封电子邮件中写道,”如果处理得当,合成数据会很有用。然而,对于如何才能处理得当,目前还没有明确的答案;有些偏见对于人类来说可能很难察觉。”

    此外,围绕对合成数据的依赖存在一场哲学辩论,人们对人工智能的本质提出了质疑——如若使用机器合成的数据,那么人工智能是否还是模仿人类智能的机器?

    斯坦福大学教授Percy Liang强调了将真正的人类智能融入数据生成过程的重要性,并强调了大规模创建合成数据的复杂性。他认为,“合成数据不是真实的数据,就像你做梦登上了珠穆朗玛峰并不是真正登顶了一样。”

    结语

    目前对于生成合成数据的最佳做法尚未达成共识,这突出表明需要在这一领域进一步研究和发展。随着该领域的不断发展,人工智能研究人员和领域专家之间的合作对于充分利用人工智能开发合成数据的潜力至关重要。

  • Deepseek-V2技术报告解读:AI领域的全新突破!

    导语:Deepseek-V2是一款全新的大型语言模型,在人工智能领域引起了广泛关注。通过研究人员和工程团队的努力,Deepseek-V2集成了多种训练策略和优化方法,取得了卓越的性能。最近发布的技术报告详细解释了Deepseek-V2的核心优化、架构设计和训练方法。本文将以通俗易懂的方式,向您介绍Deepseek-V2的技术报告。

    核心优化

    解析:Deepseek-V2利用多头隐式注意力(MLA)进行核心优化。MLA通过减少kv缓存的占用来提高解码速度,并采用低秩推理的方式进行计算。通过详细的配置文件分析,我们可以了解到每个部分的作用和设计原理。

    架构解读:Deepseek-V2采用了多层次的模型堆叠架构,经过预处理、注意力计算和多头专家模型等处理。整体架构设计遵循了一系列通用的标准,如pre-norm范式、RMSNorm归一化和SiLU非线性激活函数等。通过详细的架构图和配置文件,我们可以了解模型的设计和计算流程。

    训练:Deepseek-V2采用了多种优化策略进行训练。其中包括长度外推训练和模型对齐训练。长度外推训练通过YaRN方法扩展模型的上下文能力,而模型对齐训练通过对话数据进行SFT,并注重指令遵循能力。Deepseek-V2还进行了工程优化,如流水线并行和数据并行等,提高了训练效率。

    模型效果:Deepseek-V2在通用能力和成本效率方面取得了显著的成果。在通用能力上,模型在MMLU多选题benchmark上表现出色。在成本效率方面,Deepseek-V2节约了训练成本,减少了显存占用,并提升了生成吞吐量。通过模型效果的测试,Deepseek-V2展现出了强大的基座能力和指令遵循能力。

    讨论:Deepseek-V2的讨论部分提到了指令微调数据规模、强化学习对齐税和在线偏好对齐等方面的优化。这些优化方法进一步提升了模型的性能和效果。

    总结:Deepseek-V2通过多种优化策略和工程方法取得了突破性的成果。它的架构设计和训练方法经过精心优化,使得模型在通用能力和成本效率方面表现出色。Deepseek-V2的发布为人工智能领域带来了新的突破,为AI技术的发展提供了重要的支持。

  • 大型语言模型:解锁零样本反事实生成的黑匣子

    导语:在自然语言处理(NLP)任务中,反事实生成在模型开发和评估中扮演重要角色。然而,传统的反事实生成方法需要大量训练数据和模型微调,不太实用。因此,本研究提出了一个新的问题:如何在零样本情况下生成高质量的反事实示例?为此,我们提出了一种创新的方法,利用大型语言模型(LLMs)作为通用反事实生成器。我们猜测,最新的LLMs具有遵循指令和理解文本的能力,可以高效生成高质量的反事实,无需任何训练或微调。通过广泛的实验验证,我们展示了LLMs作为零样本反事实生成器在评估和解释黑匣子NLP模型方面的有效性。

    Q. 这篇论文试图解决什么问题?

    A. 这篇论文试图解决的问题是如何在没有额外训练数据的情况下,利用大型语言模型(LLMs)生成高质量的反事实示例。传统的反事实生成方法依赖于预训练语言模型,并在特定任务的数据集上进行微调,这在实际中不太可行。因此,本研究提出了一个新的问题设置,即零样本反事实生成,并提出了一种结构化方法,利用LLMs作为通用的反事实生成器。

    Q. 有哪些相关研究?

    A. 相关研究包括反事实生成、自动化反事实生成方法、人类专家注释、大型语言模型(LLMs)、指令遵循和文本理解、模型解释性、模型评估和健壮性测试、模型训练和改进、模型偏见和公平性等。

    Q. 论文如何解决这个问题?

    A. 论文通过提出FIZLE框架来解决零样本反事实生成问题。该框架利用LLMs作为通用的反事实生成器,无需任何训练或微调,可以生成高质量的反事实示例,用于评估和解释黑匣子NLP模型。FIZLE框架包括利用LLMs生成反事实的结构化方法,通过指令和约束提示来生成高质量的反事实,以及使用评估指标来衡量生成的反事实的质量。

    Q. 论文做了哪些实验?

    A. 论文通过反事实解释实验和模型评估实验来验证FIZLE框架的有效性。反事实解释实验使用DistilBERT模型作为黑匣子分类器,并利用FIZLE框架的两种变体生成反事实解释。模型评估实验使用不同数据集和任务,在使用FIZLE框架生成的反事实和原始测试集上对目标模型进行评估。实验使用标签翻转得分、语义相似度和编辑距离等指标来衡量生成的反事实解释的质量。

    Q. 有什么可以进一步探索的点?

    A. 可以进一步探索的点包括改进FIZLE框架、验证生成反事实的忠实度、提高LLM的推理能力、生成反事实的一致性、模型训练和改进、揭示模型偏见、模型公平性、跨领域应用、伦理和偏见问题、混合方法、大规模部署、用户研究等。这些探索点可以帮助研究者更深入地理解和改进LLMs在反事实生成任务中的应用,并推动可解释AI和NLP模型的进一步发展。

    Q. 总结一下论文的主要内容

    A. 这篇论文的主要内容可以总结如下:

    问题定义:论文提出了零样本反事实生成的问题,即在没有额外训练数据的情况下,如何利用大型语言模型(LLMs)生成高质量的反事实示例。

    FIZLE框架:作者提出了FIZLE框架,利用LLMs作为通用反事实生成器,无需训练或微调,可生成用于评估和解释黑匣子NLP模型的反事实示例。

    实验设计:通过反事实解释实验和模型评估实验,展示了FIZLE框架在解释模型决策和评估模型性能方面的有效性。

    评估指标:使用标签翻转得分、语义相似度和编辑距离等指标,衡量生成的反事实的质量。

    模型比较:将FIZLE框架与其他反事实生成方法进行比较,展示了FIZLE在不同任务上的性能。

    结果分析:实验结果表明,LLMs作为零样本反事实生成器,能够有效生成高质量的反事实,为模型评估和解释提供有力支持。

    未来工作:论文探讨了未来工作的方向,包括改进FIZLE框架、验证生成反事实的忠实度、提高LLM的推理能力、探索跨领域应用等。

    这篇论文的核心贡献在于提出了零样本反事实生成问题,并提出了FIZLE框架作为通用解决方案。该框架利用LLMs生成高质量的反事实示例,无需额外训练,有助于解释和评估NLP模型。

  • 揭秘大型语言模型:它们是否真正理解语言?

    导语:大型语言模型(LLMs)在自然语言理解任务上取得了显著进展,但它们是否真正理解语言仍存在争议。现有研究主要关注浅层的语言理解,忽视了更细致的探索。然而,这些细致的探索对于理解LLMs的独特理解机制、与人类认知的一致性以及提升LLMs的整体语言理解能力至关重要。为了填补这一研究空白,我们进行了一项深入研究,重点关注LLMs在常见词汇的不常见含义上的语义理解能力。

    研究团队首先构建了一个名为LeSC(Lexical Semantic Comprehension)的全新数据集,该数据集专注于评估LLMs在理解常见词汇的不常见含义方面的能力。通过精细处理,我们收集了来自标准化测试中的多义词,并对其进行了精细化处理。

    为了评估LLMs的表现,我们设计了两个评估指标:绝对准确率(Accabs)和加权准确率(Accwtd)。这些指标旨在客观、公正地评估模型的语言理解能力。

    我们选择了多种不同规模和架构的LLMs进行实验,包括GPT-3.5、GPT-4、Vicuna-v1.5、Llama2、Qwen、Baichuan2和ChatGLM36B. 通过与16岁人类的表现进行对比,我们发现即使是最先进的LLMs在这一基本的词汇意义理解任务上也存在显著差距。

    为了提高LLMs的性能,我们尝试了多种先进的提示技术和检索增强生成技术。然而,这些方法仍然存在局限性。

    通过注意力可视化技术等方法,我们深入分析了LLMs在处理这些任务时的响应,提供了一些案例研究,以更好地理解LLMs在这个任务中的挑战。

    这项研究揭示了LLMs在理解常见词汇的不常见含义方面的能力和局限性。我们的研究结果为未来的研究提供了有价值的见解,鼓励进一步探索,以开发更智能的LLMs。

    总结:大型语言模型(LLMs)在语言理解任务上取得了显著进展,但它们是否真正理解语言仍存在争议。本研究通过构建新的数据集和多种实验,揭示了LLMs在理解常见词汇的不常见含义方面的能力和局限性。这些发现为未来研究指明了方向,为开发更智能的LLMs提供了新的见解。


    大型语言模型是一种人工智能技术,它们通过大量的训练数据和复杂的算法来生成和理解语言。然而,关于大型语言模型是否真正理解语言的问题存在一些争议。

    大型语言模型的能力:

    • 大型语言模型在处理语言任务方面表现出色,如文本生成、机器翻译和问答系统等。它们可以生成流畅、连贯的文本,并且在某些情况下能够提供准确的答案和解释。这些模型的训练数据包含了大量的语言知识和语法规则,使得它们能够模拟人类的语言表达能力。

    大型语言模型的局限性:

    • 尽管大型语言模型在处理语言任务方面表现出色,但它们并不真正理解语言的含义。这些模型是基于统计学方法构建的,它们通过分析大量的语言数据来学习语言的模式和规律,但并没有真正的理解语言的含义和背后的语义关系。
    • 大型语言模型缺乏常识和背景知识。它们的训练数据主要来自互联网,其中包含了大量的噪音和错误信息。这使得模型在处理一些需要常识和背景知识的任务时表现不佳,容易产生错误或不准确的答案。
    • 大型语言模型缺乏推理和逻辑能力。尽管这些模型可以生成连贯的文本,但它们往往缺乏推理和逻辑能力,无法进行深入的思考和分析。这使得它们在处理复杂的语言任务时存在一定的局限性。

    总结起来,大型语言模型在处理语言任务方面表现出色,但它们并不真正理解语言的含义。它们缺乏常识和背景知识,以及推理和逻辑能力。因此,在使用大型语言模型时,我们需要谨慎对待其生成的结果,并结合人类的判断和理解进行综合考量。


    Learn more:

    1. 大型语言模型能真正理解人类语言吗?澎湃号·湃客澎湃新闻-The Paper
    2. 大型语言模型综述全新出炉:从T5到GPT-4最全盘点,国内20余位研究者联合撰写澎湃号·湃客澎湃新闻-The Paper
    3. 圣塔菲学者:AI大语言模型真的理解人类语言吗?澎湃号·湃客澎湃新闻-The Paper

  • StyleMamba:让图像风格迁移变得高效

    导语:

    想象一下,你是一位艺术家,想要将一幅风景画变成一幅抽象画。传统的方法可能需要你花费数天或数周的时间,但现在,得益于人工智能的进步,你可以用几秒钟的时间来完成。

    这就是StyleMamba的魅力所在。StyleMamba是一种新的图像风格迁移框架,它可以将文本提示转换为相应的视觉风格,同时保持原始图像的内容完整性。这意味着你可以用简单的文字来描述你想要的风格,而StyleMamba会自动将你的想法变成现实。

    StyleMamba是如何工作的?

    StyleMamba使用了一种叫做条件状态空间模型的技术来顺序对齐图像特征和目标文本提示。这种方法可以显著加快风格迁移过程,使其在几秒钟内就能完成。

    此外,StyleMamba还使用了掩蔽和二阶方向损失来优化风格化方向。这两种损失函数可以帮助StyleMamba更好地理解文本提示的含义,并将其准确地应用到图像上。

    StyleMamba的优势

    与现有的图像风格迁移方法相比,StyleMamba具有以下几个优势:

    • 效率高:StyleMamba可以将图像风格迁移过程从数天或数周缩短到几秒钟。
    • 质量好:StyleMamba生成的图像具有很高的质量,并且能够很好地保留原始图像的内容完整性。
    • 可控性强:StyleMamba允许用户通过简单的文字来描述他们想要的风格,从而实现对风格迁移过程的精细控制。

    StyleMamba的应用

    StyleMamba可以广泛应用于图像编辑、艺术创作、广告设计、电影制作等领域。例如,你可以使用StyleMamba来将一幅风景画变成一幅抽象画,将一张人像照片变成一幅油画,或者将一个产品图片变成一幅漫画。

    StyleMamba的未来

    StyleMamba是一种非常有潜力的图像风格迁移技术,它有望在未来彻底改变图像编辑和艺术创作的方式。随着人工智能技术的不断发展,StyleMamba的性能也将越来越强大,其应用范围也将越来越广泛。

  • OpenAI的AI搜索引擎:未来的搜索,今天的主角

    在数字化时代,搜索引擎是我们获取信息的重要工具。而现在,人工智能(AI)技术的加入即将重新定义我们的搜索体验。OpenAI,这个在AI领域里名声显赫的研究机构,正准备推出他们的AI搜索引擎,这可能会成为搜索技术史上的一次重大飞跃。

    一、AI搜索引擎的灰度测试

    OpenAI的AI搜索引擎目前已经开始了灰度测试,一些幸运的国内用户已经抢先体验。根据他们的反馈,这个新的搜索工具在提供苹果发布会等信息时,不仅响应速度快,而且信息准确度也相当高。

    二、实时信息搜索的挑战

    尽管在某些方面的测试结果令人鼓舞,但在处理实时信息搜索,比如比特币价格时,AI搜索引擎的准确性还有待提高。这表明,尽管AI技术在搜索领域的应用前景广阔,但要达到完美,仍需不断优化和调整。

    三、语言处理的敏感度

    AI搜索引擎在语言处理上的敏感度也是一个值得关注的问题。有用户报告称,当用中文提问时,有时会收到英文回答,这可能会影响到用户体验。

    四、与传统搜索引擎的比较

    在与Perplexity AI等其他AI搜索产品比较时,OpenAI的搜索引擎在理解用户意图和提供准确信息方面表现出了更强的能力。然而,对于Hacker News等特定信息源的搜索,Perplexity AI似乎并没有完全理解问题,而OpenAI则表现得更加精准。

    五、产品发布的期待与预测

    尽管具体的发布日期尚未确定,但网友们已经开始预测OpenAI搜索引擎的正式亮相时间。一些消息灵通的人士甚至已经发现了与OpenAI搜索引擎相关的子域名创建活动,这进一步增加了外界对这款产品的期待。

    六、市场的竞争与挑战

    尽管OpenAI的AI搜索引擎备受瞩目,但谷歌在搜索引擎市场的霸主地位依然稳固。根据统计数据,谷歌的市场份额仍然超过80%。然而,OpenAI与微软Bing的合作可能会为搜索市场带来新的竞争格局。

    七、AI搜索的未来

    AI搜索引擎的出现预示着搜索技术的未来发展。从基于关键词的单向匹配转向对话式的互动,我们获取信息的方式可能会发生深刻的变革。OpenAI的AI搜索引擎,凭借其强大的技术背景和创新能力,有望成为这一变革的先行者。

    八、结语

    OpenAI的AI搜索引擎,虽然还在测试阶段,但已经展现出了改变游戏规则的潜力。随着技术的不断进步和市场的不断调整,未来的搜索体验将变得更加智能和个性化。我们有理由期待,这款AI搜索引擎将为我们打开一扇通往信息世界的新的大门。

    我们探讨了OpenAI AI搜索引擎的开发进展、测试反馈、市场预测以及面临的挑战。这款搜索引擎的问世,不仅是技术的突破,也可能预示着搜索行业的未来趋势。

  • 从摘要模型中提取知识,提升长文本理解能力

    导语:

    在信息爆炸的时代,我们每天都会接触到大量的长文本信息,例如新闻报道、研究论文、产品说明等。然而,如何有效地理解和处理这些长文本信息,一直是自然语言处理领域的一大挑战。

    长文本理解的难点:

    长文本通常包含许多与核心主旨无关的冗余信息,这些信息会干扰我们对文本的理解。传统的自然语言处理模型在处理长文本时,往往会因为信息过载而导致性能下降。

    Gist Detector:一种创新的解决方案

    为了解决这个问题,研究人员提出了一种名为“Gist Detector”的新方法。Gist Detector 的核心思想是利用摘要模型的主旨检测能力,将提取的主旨信息整合到下游模型中,从而提升模型对长文本的理解能力。

    Gist Detector 的工作原理:

    1. 知识蒸馏: Gist Detector 首先从一个预训练的摘要模型中学习主旨检测知识。通过知识蒸馏技术,Gist Detector 可以学习到如何识别文本中的关键信息。
    2. 主旨信息提取: Gist Detector 使用 Transformer 编码器架构,分析文本中每个词的重要性,并生成主旨感知的表示。
    3. 信息整合: 将提取的主旨信息整合到下游模型中,例如用于文档分类、问答系统或文本风格迁移的模型。

    Gist Detector 的优势:

    • 提高效率: Gist Detector 比传统的摘要模型更小、更高效,可以快速提取文本的主旨信息。
    • 提升性能: Gist Detector 可以显著提升下游模型在长文本理解任务上的性能,例如文档分类、问答和风格迁移。
    • 通用性强: Gist Detector 可以应用于各种不同的 NLP 任务,具有广泛的应用前景。

    未来展望:

    Gist Detector 为长文本理解提供了一个新的思路,未来可以进一步探索以下方向:

    • 处理更长的文本序列: 例如,将 Gist Detector 应用于整个文档或多文档集合的理解。
    • 应用于更复杂的任务: 例如,文本摘要、文本生成、对话系统等。
    • 提高实时性能: 使 Gist Detector 更适合实时应用场景。
    • 跨语言和跨领域应用: 研究 Gist Detector 在不同语言和不同领域文本上的适用性。

    结语:

    Gist Detector 的出现为长文本理解领域带来了新的突破,它可以帮助我们更高效地处理和理解信息,并推动自然语言处理技术的进一步发展。

  • Analysis of “Improving Long Text Understanding with Knowledge Distilled from Summarization Model”

    This paper tackles the challenge of long text understanding in Natural Language Processing (NLP). Long documents often contain irrelevant information that can hinder comprehension. The authors propose Gist Detector, a novel approach leveraging the gist detection capabilities of summarization models to enhance downstream models’ understanding of long texts.

    Key points:

    • Problem: Difficulty in comprehending long texts due to irrelevant information and noise.
    • Solution: Gist Detector, a model trained with knowledge distillation from a summarization model to identify and extract the gist of a text.
    • Methodology:
      • Knowledge Distillation: Gist Detector learns to replicate the average attention distribution of a teacher summarization model, capturing the essence of the text.
      • Architecture: Employs a Transformer encoder to learn the importance weights of each word in the source sequence.
      • Integration: A fusion module combines the gist-aware representations with downstream models’ representations or prediction scores.
    • Evaluation: Gist Detector significantly improves performance on three tasks: long document classification, distantly supervised open-domain question answering, and non-parallel text style transfer.
    • Benefits:
      • Efficiency: Non-autoregressive and smaller than summarization models, leading to faster gist extraction.
      • Matching: Addresses the mismatch between long text understanding models and summarization models by providing a single gist-aware representation.

    Further Exploration:

    • Handling even longer texts (e.g., full documents or multiple documents).
    • Application to more complex NLP tasks (e.g., text summarization, text generation, dialogue systems).
    • Real-time performance optimization for resource-constrained environments.
    • Development of more sophisticated information fusion strategies.
    • Cross-lingual and cross-domain applications.
    • Enhancing explainability and visualization of the model’s learning process.
    • Improving robustness and generalization ability.
    • Addressing potential social biases and ensuring fairness.
    • Integration with other NLP techniques for comprehensive text understanding systems.
    • Large-scale training and evaluation.
    • User studies and feedback for real-world application optimization.
    • Model compression and optimization for deployment on mobile devices or embedded systems.

    Overall, this paper presents a promising approach for improving long text understanding in NLP, with potential for various applications and further research directions.

  • YOCO:只缓存一次的大型语言模型架构

    YOCO(You Only Cache Once)是一种新型解码器-解码器架构,旨在解决大型语言模型(LLMs)在扩展模型大小、训练令牌数量和上下文长度时面临的挑战。传统的Transformer模型在处理长序列输入时,由于需要缓存大量的键值(KV)对,导致GPU内存消耗过高,推理效率低下。YOCO通过仅缓存一次KV对,显著降低了内存需求,同时保持了与Transformer相当的性能。

    YOCO架构

    YOCO架构由两个主要组件组成:

    • 自解码器(Self-Decoder): 负责高效地编码全局KV缓存,并使用滑动窗口注意力或门控保留机制来减少内存占用。
    • 交叉解码器(Cross-Decoder): 通过交叉注意力机制重用自解码器生成的KV缓存,避免重复计算,从而提高推理效率。

    YOCO的优势

    • 降低内存需求: 通过仅缓存一次KV对,YOCO显著降低了GPU内存消耗,使得模型可以处理更长的上下文长度,并提高了模型的可扩展性。
    • 提高推理效率: YOCO的计算流程允许预填充阶段提前退出,从而加快了预填充速度,并提高了吞吐量。
    • 保持性能: YOCO在各种任务中都表现出与Transformer相当的性能,包括语言建模、针检索和长序列建模。
    • 多模态应用: YOCO的架构适用于多模态大型语言模型,并且其因果依赖性适合流式视频处理。

    未来研究方向

    • 模型压缩和加速: 研究如何进一步压缩YOCO模型,以便于在资源受限的设备上部署。
    • 多模态融合: 探索YOCO在多模态大型语言模型中的应用,例如视频和图像理解任务。
    • 优化KV缓存机制: 开发更高效的KV缓存压缩和索引机制,以进一步减少内存占用并提高检索效率。
    • 分布式训练和推理: 研究如何优化YOCO的分布式训练和推理流程,以提高吞吐量和减少延迟。

    总结

    YOCO是一种高效且可扩展的大型语言模型架构,通过仅缓存一次KV对,显著降低了内存需求,同时保持了与Transformer相当的性能。YOCO在各种任务中都表现出色,并具有广泛的应用前景,包括多模态融合和实时应用。


    YOCO(You Only Cache Once)是一种针对大型语言模型的解码器-解码器架构,它只在缓存中存储键值对一次。YOCO由两个组件组成,即交叉解码器和自解码器。自解码器通过高效的自注意力机制对全局键值(KV)缓存进行编码,而交叉解码器通过交叉注意力机制重复使用这些共享的KV缓存。整体模型的行为类似于仅解码器的Transformer模型,尽管YOCO只缓存一次。这种设计显著减少了GPU内存需求,同时保留了全局注意力的能力。此外,计算流程使得可以在不改变最终输出的情况下提前退出预填充阶段,从而显著加快了预填充速度。实验结果表明,在不同的模型规模和训练标记数量的设置下,YOCO相比Transformer取得了有利的性能。研究人员还将YOCO扩展到了1M上下文长度,并实现了接近完美的检索准确性。性能分析结果显示,YOCO在不同上下文长度和模型规模下,提高了推理内存、预填充延迟和吞吐量数个数量级。[1]

    YOCO的架构特点如下:

    1. 只缓存一次:YOCO只在缓存中存储键值对一次,大大减少了GPU内存消耗。
    2. 高效的自解码器:YOCO的自解码器采用高效的自注意力机制,用于编码全局键值缓存。
    3. 交叉解码器的重复使用:YOCO的交叉解码器通过交叉注意力机制重复使用自解码器产生的共享KV缓存。
    4. 提前退出预填充:YOCO的计算流程使得可以在不改变最终输出的情况下提前退出预填充阶段,加快了预填充速度。
    5. 适用于大型语言模型:YOCO的设计使其适用于大型语言模型,具有较低的GPU内存需求和较高的推理效率。

    YOCO的实验结果表明,它在各种任务上都表现出良好的性能,并在推理效率方面具有许多优势。YOCO可以随着训练标记数量、模型规模和上下文长度的增加而扩展。此外,YOCO还通过减少GPU内存占用、加快预填充速度和提高服务能力等方面,改善了推理效率。因此,YOCO被认为是未来具有原生长序列支持的大型语言模型的强有力的候选模型架构。[2]


    Learn more:

    1. [2405.05254] You Only Cache Once: Decoder-Decoder Architectures for Language Models
    2. You Only Cache Once: Decoder-Decoder Architectures for Language Models
    3. You Only Cache Once:YOCO 基于Decoder-Decoder 的一个新的大语言模型架构-腾讯云开发者社区-腾讯云
  • 谷歌DeepMind推出新一代药物研发AI模型AlphaFold 3

    谷歌DeepMind发布了新一代预测蛋白质结构的AlphaFold 3模型,能够帮助科学家更精确地针对疾病机制,从而开发出更有效的治疗药物。

    AlphaFold 3是一种人工智能(AI)模型,它可以预测蛋白质、DNA、RNA等生物分子的结构以及它们如何相互作用。

    DeepMind首席执行官戴密斯·哈萨比斯表示,AlphaFold 3对我们来说是一个重要的里程碑。“生物学是一个动态系统,你必须了解生理特性是如何通过细胞中不同分子之间的相互作用而产生的。你可以把AlphaFold 3看作是我们朝着这个方向迈出了一大步。”

    哈萨比斯补充说,相关的突破性研究论文将于周三发表在《自然》上,AlphaFold 3可以显著减少开发改变生活的治疗手段所需的时间和资金。

    另外,DeepMind还推出了AlphaFold Server,它是一个供全球科学家用于非商业研究的免费平台。

    AlphaFold 3是首次有一个单一的系统能够以最先进的性能预测几乎所有分子类型之间的相互作用。

    诺贝尔奖获得者、遗传学家保罗·纳斯评论称,AlphaFold正在不断改进,并且对于生物学研究越来越重要了。AlphaFold 3能够以更高的准确性预测不同大分子之间复合物的结构,以及大分子、小分子和离子之间的相互作用。

    南安普顿大学的Ivo Tews博士称AlphaFold 3是一个飞跃,并表示他的实验室将用它来开发用于治疗癌症的药物。

人生梦想 - 关注前沿的计算机技术 acejoy.com