An, M. , Wu, F., Wu, C., Zhang, K., Liu, Z., & Xie, X. (2019). Neural news recommendation with long- and short-term user representations. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers) (pp. 1033-1043).✅
Okura, S. , Tagami, Y., Ono, S., & Tajima, A. (2017). Embedding-based news recommendation for millions of users. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1933-1942).✅
你是否曾经在新闻网站上看到过你感兴趣的新闻,却发现下一条推荐的新闻与你的兴趣毫无关联?或者,你是否曾经因为一条新闻而对某个话题产生兴趣,却无法找到更多相关内容?
这正是新闻推荐系统面临的挑战。为了更好地满足用户的个性化需求,新闻推荐系统需要了解用户的兴趣,并根据兴趣推荐相关新闻。然而,用户的兴趣并非一成不变,他们既有长期稳定的偏好,也可能因为特定事件或时间需求而产生短期兴趣。
传统的新闻推荐方法通常只关注用户的单一兴趣,难以捕捉用户的长短期兴趣变化。 例如,一些方法通过分析用户历史浏览记录来推断用户的兴趣,但这种方法难以区分用户的长期兴趣和短期兴趣。例如,一位用户可能长期关注篮球新闻,但近期可能因为一部电影而对电影相关的新闻产生了兴趣。如果推荐系统只根据历史浏览记录进行推荐,就可能推荐与用户近期兴趣无关的篮球新闻,导致用户体验下降。
为了解决这个问题,本文介绍了一种新的新闻推荐方法,该方法可以同时学习用户的长短期兴趣,并根据用户的综合兴趣进行推荐。
长短期用户兴趣:捕捉新闻阅读的多样性
我们每个人都有自己独特的新闻阅读习惯。有些人长期关注某个特定领域,例如体育、科技或财经。这种长期兴趣反映了用户的稳定偏好,例如一位篮球爱好者可能多年来一直关注NBA新闻。
另一方面,我们的兴趣也会随着时间而变化。例如,你可能因为一部电影而对电影相关的新闻产生兴趣,或者因为某个突发事件而关注相关报道。这种短期兴趣通常由特定事件或时间需求触发,例如一位用户可能因为观看了电影《波西米亚狂想曲》而对主演拉米·马雷克的新闻产生了兴趣。
长短期兴趣共同构成了用户的新闻阅读偏好。 为了更好地理解用户的兴趣,我们需要将长短期兴趣区分开来,并分别进行学习。
LSTUR:长短期用户表示模型
为了学习用户的长短期兴趣,我们提出了一个新的新闻推荐模型,称为LSTUR(Long- and Short-Term User Representations)。该模型包含两个主要部分:新闻编码器和用户编码器。
新闻编码器用于学习新闻的表示,它从新闻标题和主题类别中提取信息,并使用注意力机制来选择重要的词语,从而生成更准确的新闻表示。
用户编码器则用于学习用户的表示,它包含两个模块:长期用户表示模块(LTUR)和短期用户表示模块(STUR)。LTUR通过用户的ID来学习用户的长期兴趣,而STUR则使用循环神经网络(GRU)来学习用户近期浏览新闻的短期兴趣。
LSTUR模型的两种融合方法
LSTUR模型提供了两种方法来融合长短期用户表示:
实验结果:LSTUR模型的优越性
我们在一个真实的新闻数据集上进行了实验,结果表明LSTUR模型显著优于传统的新闻推荐方法,包括基于手工特征工程的模型和基于深度学习的模型。
实验结果表明,LSTUR模型能够有效地捕捉用户的长短期兴趣,并根据用户的综合兴趣进行推荐。 这说明LSTUR模型能够更好地理解用户的新闻阅读偏好,从而提高新闻推荐的准确性和用户体验。
未来展望
LSTUR模型为新闻推荐领域提供了一个新的方向,它可以帮助我们更好地理解用户的兴趣,并提供更个性化的新闻推荐服务。未来,我们可以进一步研究以下问题:
参考文献
希望这篇文章能够帮助你更好地理解新闻推荐系统的工作原理,以及用户长短期兴趣对新闻推荐的影响。