借一步网
作者:
在
推荐系统在帮助用户发现相关和个性化的项目或内容方面发挥着至关重要的作用。随着大语言模型(Large Language Models, LLMs)在自然语言处理(Natural Language Processing, NLP)领域的崛起,人们越来越关注如何利用这些强大的模型来增强推荐系统的性能。
大语言模型的核心优势在于它们能够提取高质量的文本特征表示,并利用其中编码的广泛外部知识。这些模型经过大规模数据的自监督学习,能够有效捕捉上下文信息,理解用户查询、项目描述以及其他文本数据,从而提高推荐的准确性和相关性,提升用户满意度。
与传统推荐系统不同,基于大语言模型的推荐系统在捕捉上下文信息和理解用户查询方面表现出色。这得益于这些模型在大规模数据集上的预训练,使得它们能够生成高质量的文本表示,这些表示可以更好地反映用户的兴趣和偏好。
大语言模型预训练过程中包含了大量的事实信息、领域知识和常识推理能力,这使得它们能够在面对数据稀疏问题时提供零样本或少样本推荐。通过利用这些外部知识,推荐系统可以在没有特定项目或用户的历史记录的情况下提供合理的推荐。
为了全面理解现有基于大语言模型的推荐系统,本次综述将这些模型分为两大类:判别式大语言模型推荐(DLLM4Rec)和生成式大语言模型推荐(GLLM4Rec)。
判别式模型,主要以BERT系列为代表,擅长于自然语言理解任务,通常被用作下游任务的嵌入骨架。在推荐系统中,这些模型通过微调,将预训练模型的表示与特定领域数据对齐,从而提高推荐性能。常见的方法包括微调和提示调优(prompt tuning)。
微调是利用预训练语言模型的一种通用技术,通过在推荐特定的数据集上进一步训练模型,从而使其适应特定任务。例如,Qiu等人提出了U-BERT模型,通过在丰富的内容域上预训练用户表示来补充那些行为数据不足的用户特征。
提示调优通过硬提示或软提示以及标签词转换器来对齐推荐任务与预训练损失。例如,Penha和Hauff利用BERT的掩码语言模型(MLM)头揭示其对项目类型的理解,并通过提示学习进行对话推荐。
生成式模型具有更强的自然语言生成能力,能够直接生成推荐结果。近年来,随着ChatGPT等生成模型的兴起,这类工作获得了更多关注。根据是否需要调整模型参数,生成式大语言模型推荐可以进一步细分为非调优范式和调优范式。
非调优范式假设大语言模型已经具备推荐能力,通过引入特定的提示来触发这些能力。例如,Liu等人系统评价了ChatGPT在五个常见推荐任务上的表现,并提出了一种通用的推荐提示构建框架。
调优范式通过进一步微调或提示学习来增强大语言模型的推荐能力。这类方法包括微调、提示调优和指令调优。例如,Bao等人提出的TALLRec模型通过两阶段的调优来对齐大语言模型与推荐任务。
大语言模型在推荐系统中的应用前景广阔,但仍处于早期阶段。未来,随着计算能力的提升和人工智能领域的不断进步,LLM在推荐系统中的应用将更加复杂和精细。我们期待看到更多融合多模态输入、实时个性化推荐的应用,同时也希望在公平性、责任和透明度方面取得更多进展。
在这篇综述中,我们对大语言模型在推荐系统中的应用进行了系统回顾,分类了现有工作并详细介绍了不同的域适应方式。我们希望这篇综述能够为研究人员提供一个全面的理解大语言模型推荐系统的资源,并激发进一步的研究和创新。
参考文献:
Wu, Likang, et al. “A Survey on Large Language Models for Recommendation.” 2023.
https://paperswithcode.com/task/recommendation-systems
要发表评论,您必须先登录。
推荐系统在帮助用户发现相关和个性化的项目或内容方面发挥着至关重要的作用。随着大语言模型(Large Language Models, LLMs)在自然语言处理(Natural Language Processing, NLP)领域的崛起,人们越来越关注如何利用这些强大的模型来增强推荐系统的性能。
大语言模型的优势
大语言模型的核心优势在于它们能够提取高质量的文本特征表示,并利用其中编码的广泛外部知识。这些模型经过大规模数据的自监督学习,能够有效捕捉上下文信息,理解用户查询、项目描述以及其他文本数据,从而提高推荐的准确性和相关性,提升用户满意度。
高质量文本特征表示
与传统推荐系统不同,基于大语言模型的推荐系统在捕捉上下文信息和理解用户查询方面表现出色。这得益于这些模型在大规模数据集上的预训练,使得它们能够生成高质量的文本表示,这些表示可以更好地反映用户的兴趣和偏好。
外部知识的广泛覆盖
大语言模型预训练过程中包含了大量的事实信息、领域知识和常识推理能力,这使得它们能够在面对数据稀疏问题时提供零样本或少样本推荐。通过利用这些外部知识,推荐系统可以在没有特定项目或用户的历史记录的情况下提供合理的推荐。
大语言模型推荐系统的分类
为了全面理解现有基于大语言模型的推荐系统,本次综述将这些模型分为两大类:判别式大语言模型推荐(DLLM4Rec)和生成式大语言模型推荐(GLLM4Rec)。
判别式大语言模型推荐
判别式模型,主要以BERT系列为代表,擅长于自然语言理解任务,通常被用作下游任务的嵌入骨架。在推荐系统中,这些模型通过微调,将预训练模型的表示与特定领域数据对齐,从而提高推荐性能。常见的方法包括微调和提示调优(prompt tuning)。
微调
微调是利用预训练语言模型的一种通用技术,通过在推荐特定的数据集上进一步训练模型,从而使其适应特定任务。例如,Qiu等人提出了U-BERT模型,通过在丰富的内容域上预训练用户表示来补充那些行为数据不足的用户特征。
提示调优
提示调优通过硬提示或软提示以及标签词转换器来对齐推荐任务与预训练损失。例如,Penha和Hauff利用BERT的掩码语言模型(MLM)头揭示其对项目类型的理解,并通过提示学习进行对话推荐。
生成式大语言模型推荐
生成式模型具有更强的自然语言生成能力,能够直接生成推荐结果。近年来,随着ChatGPT等生成模型的兴起,这类工作获得了更多关注。根据是否需要调整模型参数,生成式大语言模型推荐可以进一步细分为非调优范式和调优范式。
非调优范式
非调优范式假设大语言模型已经具备推荐能力,通过引入特定的提示来触发这些能力。例如,Liu等人系统评价了ChatGPT在五个常见推荐任务上的表现,并提出了一种通用的推荐提示构建框架。
调优范式
调优范式通过进一步微调或提示学习来增强大语言模型的推荐能力。这类方法包括微调、提示调优和指令调优。例如,Bao等人提出的TALLRec模型通过两阶段的调优来对齐大语言模型与推荐任务。
关键挑战与未来方向
模型偏差
推荐提示设计
有前途的能力
评估问题
结论
大语言模型在推荐系统中的应用前景广阔,但仍处于早期阶段。未来,随着计算能力的提升和人工智能领域的不断进步,LLM在推荐系统中的应用将更加复杂和精细。我们期待看到更多融合多模态输入、实时个性化推荐的应用,同时也希望在公平性、责任和透明度方面取得更多进展。
在这篇综述中,我们对大语言模型在推荐系统中的应用进行了系统回顾,分类了现有工作并详细介绍了不同的域适应方式。我们希望这篇综述能够为研究人员提供一个全面的理解大语言模型推荐系统的资源,并激发进一步的研究和创新。
参考文献:
Wu, Likang, et al. “A Survey on Large Language Models for Recommendation.” 2023.