二叉搜索树心法(基操篇)

通知:为满足广大读者的需求,网站上架 速成目录,如有需要可以看下,谢谢大家的支持~另外,建议你在我的 网站 学习文章,体验更好。
读完本文,你不仅学会了算法套路,还可以顺便解决如下题目:
-----------
[!NOTE]
阅读本文前,你需要先学习:
我们前文 二叉搜索树心法(特性篇) 介绍了 BST 的基本特性,还利用二叉搜索树「中序遍历有序」的特性来解决了几道题目,本文来实现 BST 的基础操作:判断 BST 的合法性、增、删、查。其中「删」和「判断合法性」略微复杂。
BST 的基础操作主要依赖「左小右大」的特性,可以在二叉树中做类似二分搜索的操作,寻找一个元素的效率很高。比如下面这就是一棵合法的二叉树:

对于 BST 相关的问题,你可能会经常看到类似下面这样的代码逻辑:
void BST(TreeNode root, int target) {
if (root.val == target)
// 找到目标,做点什么
if (root.val < target)
BST(root.right, target);
if (root.val > target)
BST(root.left, target);
}
这个代码框架其实和二叉树的遍历框架差不多,无非就是利用了 BST 左小右大的特性而已。接下来看下 BST 这种结构的基础操作是如何实现的。
一、判断 BST 的合法性
力扣第 98 题「验证二叉搜索树」就是让你判断输入的 BST 是否合法:
注意,这里是有坑的哦。按照 BST 左小右大的特性,每个节点想要判断自己是否是合法的 BST 节点,要做的事不就是比较自己和左右孩子吗?感觉应该这样写代码:
boolean isValidBST(TreeNode root) {
if (root == null) return true;
// root 的左边应该更小
if (root.left != null && root.left.val >= root.val)
return false;
// root 的右边应该更大
if (root.right != null && root.right.val <= root.val)
return false;
return isValidBST(root.left)
&& isValidBST(root.right);
}
但是这个算法出现了错误,BST 的每个节点应该要小于右边子树的所有节点,下面这个二叉树显然不是 BST,因为节点 10 的右子树中有一个节点 6,但是我们的算法会把它判定为合法 BST:

错误的原因在于,对于每一个节点 root,代码值检查了它的左右孩子节点是否符合左小右大的原则;但是根据 BST 的定义,root 的整个左子树都要小于 root.val,整个右子树都要大于 root.val。
问题是,对于某一个节点 root,他只能管得了自己的左右子节点,怎么把 root 的约束传递给左右子树呢?请看正确的代码:
class Solution {
public boolean isValidBST(TreeNode root) {
return _isValidBST(root, null, null);
}
// 定义:该函数返回 root 为根的子树的所有节点是否满足 max.val > root.val > min.val
public boolean _isValidBST(TreeNode root, TreeNode min, TreeNode max) {
// base case
if (root == null) return true;
// 若 root.val 不符合 max 和 min 的限制,说明不是合法 BST
if (min != null && root.val <= min.val) return false;
if (max != null && root.val >= max.val) return false;
// 根据定义,限定左子树的最大值是 root.val,右子树的最小值是 root.val
return _isValidBST(root.left, min, root)
&& _isValidBST(root.right, root, max);
}
}
🎃 代码可视化动画🎃
我们通过使用辅助函数,增加函数参数列表,在参数中携带额外信息,将这种约束传递给子树的所有节点,这也是二叉树算法的一个小技巧吧。
在 BST 中搜索元素
力扣第 700 题「二叉搜索树中的搜索」就是让你在 BST 中搜索值为 target 的节点,函数签名如下:
TreeNode searchBST(TreeNode root, int target);
如果是在一棵普通的二叉树中寻找,可以这样写代码:
TreeNode searchBST(TreeNode root, int target) {
if (root == null) return null;
if (root.val == target) return root;
// 当前节点没找到就递归地去左右子树寻找
TreeNode left = searchBST(root.left, target);
TreeNode right = searchBST(root.right, target);
return left != null ? left : right;
}
这样写完全正确,但这段代码相当于穷举了所有节点,适用于所有二叉树。那么应该如何充分利用 BST 的特殊性,把「左小右大」的特性用上?
很简单,其实不需要递归地搜索两边,类似二分查找思想,根据 target 和 root.val 的大小比较,就能排除一边。我们把上面的思路稍稍改动:
TreeNode searchBST(TreeNode root, int target) {
if (root == null) {
return null;
}
// 去左子树搜索
if (root.val > target) {
return searchBST(root.left, target);
}
// 去右子树搜索
if (root.val < target) {
return searchBST(root.right, target);
}
// 当前节点就是目标值
return root;
}
👾 代码可视化动画👾
在 BST 中插入一个数
对数据结构的操作无非遍历 + 访问,遍历就是「找」,访问就是「改」。具体到这个问题,插入一个数,就是先找到插入位置,然后进行插入操作。
因为 BST 一般不会存在值重复的节点,所以我们一般不会在 BST 中插入已存在的值。下面的代码都默认不会向 BST 中插入已存在的值。
上一个问题,我们总结了 BST 中的遍历框架,就是「找」的问题。直接套框架,加上「改」的操作即可。
一旦涉及「改」,就类似二叉树的构造问题,函数要返回 TreeNode 类型,并且要对递归调用的返回值进行接收。
力扣第 701 题「二叉搜索树中的插入操作」就是这个问题:
直接看解法代码吧,可以结合注释和可视化面板的来理解:
class Solution {
public TreeNode insertIntoBST(TreeNode root, int val) {
if (root == null) {
// 找到空位置插入新节点
return new TreeNode(val);
}
// 去右子树找插入位置
if (root.val < val) {
root.right = insertIntoBST(root.right, val);
}
// 去左子树找插入位置
if (root.val > val) {
root.left = insertIntoBST(root.left, val);
}
// 返回 root,上层递归会接收返回值作为子节点
return root;
}
}
🌈 代码可视化动画🌈
三、在 BST 中删除一个数
力扣第 450 题「删除二叉搜索树中的节点」就是让你在 BST 中删除一个值为 key 的节点:
这个问题稍微复杂,跟插入操作类似,先「找」再「改」,先把框架写出来再说:
TreeNode deleteNode(TreeNode root, int key) {
if (root.val == key) {
// 找到啦,进行删除
} else if (root.val > key) {
// 去左子树找
root.left = deleteNode(root.left, key);
} else if (root.val < key) {
// 去右子树找
root.right = deleteNode(root.right, key);
}
return root;
}
找到目标节点了,比方说是节点 A,如何删除这个节点,这是难点。因为删除节点的同时不能破坏 BST 的性质。有三种情况,用图片来说明。
情况 1:A 恰好是末端节点,两个子节点都为空,那么它可以当场去世了。

if (root.left == null && root.right == null)
return null;
情况 2:A 只有一个非空子节点,那么它要让这个孩子接替自己的位置。

// 排除了情况 1 之后
if (root.left == null) return root.right;
if (root.right == null) return root.left;
情况 3:A 有两个子节点,麻烦了,为了不破坏 BST 的性质,A 必须找到左子树中最大的那个节点,或者右子树中最小的那个节点来接替自己。我们以第二种方式讲解。

if (root.left != null && root.right != null) {
// 找到右子树的最小节点
TreeNode minNode = getMin(root.right);
// 把 root 改成 minNode
root.val = minNode.val;
// 转而去删除 minNode
root.right = deleteNode(root.right, minNode.val);
}
三种情况分析完毕,填入框架,简化一下代码:
class Solution {
public TreeNode deleteNode(TreeNode root, int key) {
if (root == null) return null;
if (root.val == key) {
// 这两个 if 把情况 1 和 2 都正确处理了
if (root.left == null) return root.right;
if (root.right == null) return root.left;
// 处理情况 3
// 获得右子树最小的节点
TreeNode minNode = getMin(root.right);
// 删除右子树最小的节点
root.right = deleteNode(root.right, minNode.val);
// 用右子树最小的节点替换 root 节点
minNode.left = root.left;
minNode.right = root.right;
root = minNode;
} else if (root.val > key) {
root.left = deleteNode(root.left, key);
} else if (root.val < key) {
root.right = deleteNode(root.right, key);
}
return root;
}
TreeNode getMin(TreeNode node) {
// BST 最左边的就是最小的
while (node.left != null) node = node.left;
return node;
}
}
🥳 代码可视化动画🥳
这样,删除操作就完成了。注意一下,上述代码在处理情况 3 时通过一系列略微复杂的链表操作交换 root 和 minNode 两个节点:
// 处理情况 3
// 获得右子树最小的节点
TreeNode minNode = getMin(root.right);
// 删除右子树最小的节点
root.right = deleteNode(root.right, minNode.val);
// 用右子树最小的节点替换 root 节点
minNode.left = root.left;
minNode.right = root.right;
root = minNode;
有的读者可能会疑惑,替换 root 节点为什么这么麻烦,直接改 val 字段不就行了?看起来还更简洁易懂:
// 处理情况 3
// 获得右子树最小的节点
TreeNode minNode = getMin(root.right);
// 删除右子树最小的节点
root.right = deleteNode(root.right, minNode.val);
// 用右子树最小的节点替换 root 节点
root.val = minNode.val;
仅对于这道算法题来说是可以的,但这样操作并不完美,我们一般不会通过修改节点内部的值来交换节点。因为在实际应用中,BST 节点内部的数据域是用户自定义的,可以非常复杂,而 BST 作为数据结构(一个工具人),其操作应该和内部存储的数据域解耦,所以我们更倾向于使用指针操作来交换节点,根本没必要关心内部数据。
最后简单总结一下吧,通过这篇文章,我们总结出了如下几个技巧:
1、如果当前节点会对下面的子节点有整体影响,可以通过辅助函数增长参数列表,借助参数传递信息。
2、掌握 BST 的增删查改方法。
3、递归修改数据结构时,需要对递归调用的返回值进行接收,并返回修改后的节点。
本文就到这里,更多经典的二叉树习题以及递归思维的训练,请参见二叉树章节中的 递归专项练习
引用本文的文章
- [Trie/字典树/前缀树代码实现](https://labuladong.online/algo/data-structure/trie-implement/)
- [【强化练习】二叉搜索树经典例题 II](https://labuladong.online/algo/problem-set/bst2/)
- [二叉搜索树心法(后序篇)](https://labuladong.online/algo/data-structure/bst-part4/)
- [二叉搜索树心法(构造篇)](https://labuladong.online/algo/data-structure/bst-part3/)