《LLMs强化学习真的能激励超出基础模型的推理能力吗?》智能记忆学习材料

学习目标

通过精心设计的选择题和原文对照,帮助学习者掌握核心知识点

使用说明

请仔细阅读每个问题,对照原文理解解析

题目与解析

知识点: RLVR的基本概念与应用
题目: RLVR代表什么,它主要应用于哪些领域?
选项:
A. Reinforcement Learning with Visual Recognition,主要应用于图像识别
B. Reinforcement Learning with Verifiable Rewards,主要应用于数学和编程任务
C. Reinforcement Learning with Variable Rates,主要应用于金融模型
D. Reinforcement Learning with Vector Representation,主要应用于自然语言处理

正确答案: B
原文依据: 「Reinforcement Learning with Verifiable Rewards (RLVR) has recently demonstrated notable success in enhancing the reasoning capabilities of large language models (LLMs), particularly in mathematics and programming tasks.」(出自:2504.13837v1.pdf,第1页)
解析: 原文明确指出RLVR代表”Reinforcement Learning with Verifiable Rewards”(可验证奖励的强化学习),并特别提到它在数学和编程任务中取得了显著成功,增强了大型语言模型的推理能力。

知识点: 研究的核心发现
题目: 根据论文的研究,关于RLVR训练对LLM推理能力的影响,以下哪项描述是正确的?
选项:
A. RLVR训练使模型获得了全新的推理能力,超越了基础模型
B. RLVR训练主要提高了采样效率,但实际上缩小了推理能力边界
C. RLVR训练对基础模型没有任何影响
D. RLVR训练使模型能够解决更多类型的问题

正确答案: B
原文依据: 「RLVR boosts sampling efficiency but reduces the scope of reasoning capacity.」(出自:2504.13837v1.pdf,第3页)
解析: 论文的核心发现之一是RLVR训练虽然提高了模型的采样效率(使模型更容易采样到正确答案),但实际上减小了模型的推理能力范围。这与传统认为RLVR能够使模型获得全新推理能力的观点相反。

知识点: pass@k指标的意义
题目: 论文中使用的pass@k指标主要用于测量什么?
选项:
A. 模型在k次尝试内解决问题的概率
B. 模型在k个样本中的平均准确率
C. 模型在k轮训练后的性能提升
D. 模型在k个不同数据集上的表现

正确答案: A
原文依据: 「Given a problem, we sample k outputs from the model. The pass@k value for this question is 1 if at least one of the k samples passes verification; otherwise, it is 0.」(出自:2504.13837v1.pdf,第5页)
解析: pass@k指标测量的是模型在k次采样尝试中至少有一次成功解决问题的能力。这个指标能够更全面地评估模型的推理能力边界,而不仅仅是平均表现。

知识点: 基础模型与RL训练模型的比较
题目: 当k值较大时,基础模型与RL训练模型的pass@k表现如何比较?
选项:
A. RL训练模型始终优于基础模型
B. 基础模型与RL训练模型表现相当
C. 基础模型的pass@k值超过了RL训练模型
D. 无法比较,因为两种模型使用不同的评估标准

正确答案: C
原文依据: 「Although RL-trained models consistently outperform their base models in small k as shown in previous work (Guo et al., 2025), it is highly surprising that base models consistently surpass RL-trained models across all benchmarks and LLM families as k increases.」(出自:2504.13837v1.pdf,第2-3页)
解析: 论文的一个关键发现是,虽然在k值较小时RL训练模型表现更好,但随着k值增大,基础模型的pass@k值反而超过了RL训练模型,这一现象在所有基准测试和LLM家族中都一致观察到。

知识点: RL训练模型的推理路径来源
题目: 根据论文的分析,RL训练模型的推理路径主要来自哪里?
选项:
A. 完全是RL训练过程中新学到的
B. 主要来自于基础模型的输出分布
C. 主要来自于人类专家的示范
D. 主要来自于其他更强大模型的蒸馏

正确答案: B
原文依据: 「Our findings show that reasoning paths generated by RLVR-trained models already exist within the base models’ output distribution with considerable probability density, indicating that these reasoning patterns and CoTs are not totally strange and unachievable for base models.」(出自:2504.13837v1.pdf,第3页)
解析: 论文通过困惑度分析发现,RL训练模型生成的推理路径实际上已经存在于基础模型的输出分布中,只是RL训练使模型更倾向于采样这些高奖励的路径。

知识点: RLVR与蒸馏方法的比较
题目: 论文如何比较RLVR与蒸馏方法对模型推理能力的影响?
选项:
A. 两种方法效果相同,都能扩展模型的推理边界
B. RLVR比蒸馏更有效,能够产生更多新的推理模式
C. 蒸馏能够引入新知识并扩展推理边界,而RLVR主要提高采样效率
D. 两种方法都无法超越基础模型的推理能力

正确答案: C
原文依据: 「While RL improves sampling efficiency, distillation can genuinely introduce new knowledge into the model. As a result, distilled models often exhibit an expanded scope of reasoning capability beyond that of the base model by learning from distilled models, in contrast to RLVR-trained models whose capacity remains bounded by the base.」(出自:2504.13837v1.pdf,第3页)
解析: 论文明确区分了RLVR和蒸馏的不同效果:RLVR主要提高采样效率但受限于基础模型的能力边界,而蒸馏能够真正引入新知识并扩展模型的推理能力边界。

知识点: 不同RL算法的比较
题目: 论文对不同RL算法(PPO, GRPO, Reinforce++等)的比较结果是什么?
选项:
A. 不同算法之间存在显著性能差异
B. 不同算法表现相似,且都远未达到最优采样效率
C. PPO算法明显优于其他所有算法
D. 所有算法都能达到接近最优的采样效率

正确答案: B
原文依据: 「Although different RL algorithms (e.g., PPO, GRPO, Reinforce++) show slight variations in performance, it does not make essential difference.」(出自:2504.13837v1.pdf,第3页)
解析: 论文通过对多种RL算法的比较发现,虽然不同算法在性能上有轻微差异,但这些差异并不本质,且所有算法都远未达到最优采样效率(与基础模型在大k值下的表现相比)。

知识点: 采样效率差距(∆SE)的定义
题目: 论文中提出的”采样效率差距(∆SE)”是如何定义的?
选项:
A. RL模型的pass@1与基础模型的pass@1之差
B. RL模型的pass@1与基础模型的pass@k(k=256)之差
C. RL模型的pass@k与基础模型的pass@k之差
D. RL模型在不同k值下的pass@k变化率

正确答案: B
原文依据: 「We define the difference between the RL model’s pass@1 and the base model’s pass@k (i.e., an potential performance upper-bound; we use k = 256) as the sampling efficiency gap (∆SE), which quantifies how effectively an RL algorithm approaches optimal sampling efficiency.」(出自:2504.13837v1.pdf,第3页)
解析: 论文定义采样效率差距(∆SE)为RL模型的pass@1与基础模型的pass@k(k=256)之差,用于量化RL算法在提高采样效率方面的有效性。较小的∆SE值表示算法更接近最优采样效率。

知识点: RL训练步数对模型性能的影响
题目: 随着RL训练步数的增加,模型性能会如何变化?
选项:
A. pass@1和pass@k都会持续提高
B. pass@1提高但pass@k(大k值)下降
C. pass@1和pass@k都会下降
D. pass@1保持不变但pass@k提高

正确答案: B
原文依据: 「As RLVR training progresses, the average performance (i.e., pass@1) improves, but the coverage of solvable problems (i.e., pass@256) decreases, indicating a reduction in the model’s reasoning upper bound.」(出自:2504.13837v1.pdf,第2页)
解析: 论文发现,随着RL训练步数的增加,模型的平均性能(pass@1)会提高,但可解决问题的覆盖范围(pass@256)会下降,表明模型的推理上限实际上在减少。

知识点: 传统RL与RLVR的关键区别
题目: 论文指出传统RL(如AlphaGo)与RLVR的关键区别是什么?
选项:
A. 训练数据的规模和质量
B. 奖励函数的设计方式
C. 动作空间的大小和预训练先验的存在
D. 训练时间和计算资源的差异

正确答案: C
原文依据: 「First, the action space in language models is exponentially larger than that of Go or Atari games. RL algorithms were not originally designed to handle such a vast action space, which makes it nearly impossible to explore the reward signal effectively if training starts from scratch. Therefore, the second distinction is that RLVR for LLMs starts with a pretrained base model with useful prior, whereas traditional RL in Atari and GO games often begins from scratch.」(出自:2504.13837v1.pdf,第11-12页)
解析: 论文指出传统RL与RLVR的两个关键区别:1)语言模型的动作空间指数级大于围棋或Atari游戏;2)RLVR从预训练的基础模型开始,而传统RL通常从零开始。这些区别导致RLVR难以探索超出基础模型先验的新推理模式。

知识点: 研究方法的严谨性保证
题目: 论文如何确保pass@k在大k值下不仅仅反映”幸运猜测”而是真实的推理能力?
选项:
A. 仅使用多项选择题进行评估
B. 手动检查最具挑战性问题的正确答案的推理链(CoT)
C. 只评估简单问题的pass@k
D. 使用更复杂的统计模型进行校正

正确答案: B
原文依据: 「Following (Brown et al., 2024), we manually inspect all CoTs that led to correct answers on the most challenging solvable problems in the GSM8k dataset—those with an average accuracy below 5% but above 0%. The base model answered 25 such questions, with 24 containing at least one correct CoT.」(出自:2504.13837v1.pdf,第7页)
解析: 为确保pass@k真实反映推理能力而非幸运猜测,研究者手动检查了最具挑战性问题(平均准确率低于5%但大于0%)的所有正确答案的推理链(CoT),发现绝大多数确实包含有效的推理过程。

知识点: 视觉推理任务中的RLVR效果
题目: 论文在视觉推理任务中观察到的RLVR效果与其他任务相比如何?
选项:
A. 视觉推理任务中RLVR效果更好
B. 视觉推理任务中RLVR效果更差
C. 视觉推理任务中RLVR效果与数学和编程任务一致
D. 视觉推理任务中无法应用RLVR

正确答案: C
原文依据: 「As shown in Figure 5 (right), the effects of RLVR on visual reasoning are highly consistent with those observed in math and coding benchmarks.」(出自:2504.13837v1.pdf,第8页)
解析: 论文在视觉推理任务中观察到的RLVR效果与数学和编程任务中的发现高度一致,即在小k值时RL模型表现更好,但在大k值时基础模型的覆盖范围更广。

知识点: 研究的实验设置
题目: 论文在数学推理任务中主要使用了哪些模型进行实验?
选项:
A. 仅使用GPT系列模型
B. 仅使用LLaMA系列模型
C. 主要使用Qwen-2.5系列和LLaMA-3.1-8B模型
D. 仅使用专门为数学设计的模型

正确答案: C
原文依据: 「In math problems, models are required to generate a reasoning process (i.e., CoT) along with the final answer. To ensure the robustness of our conclusions, we experiment with multiple LLM families, primarily Qwen-2.5 (7B/14B/32B base variants) (Yang et al., 2024) and additionally LLaMA-3.1-8B (Grattafiori et al., 2024).」(出自:2504.13837v1.pdf,第6页)
解析: 论文在数学推理任务中主要使用了Qwen-2.5系列(7B/14B/32B基础变体)和LLaMA-3.1-8B模型进行实验,以确保结论的稳健性。

知识点: 困惑度分析的结果
题目: 论文通过困惑度(perplexity)分析得出了什么结论?
选项:
A. RL模型生成的响应对基础模型来说完全陌生
B. RL模型生成的响应在基础模型的输出分布中具有较高概率密度
C. 基础模型无法理解RL模型的推理路径
D. RL模型和基础模型的输出分布完全不同

正确答案: B
原文依据: 「The distribution of PPLBase(YRL|x) closely matches the lower portion of the PPLBase(YBase|x) distribution, corresponding to responses that the base model tends to generate. This suggests that the responses from RL-trained models are highly likely to be generated by the base model.」(出自:2504.13837v1.pdf,第9页)
解析: 通过困惑度分析,论文发现RL模型生成的响应与基础模型倾向于生成的响应高度匹配,表明RL模型的响应很可能由基础模型生成,这支持了RL训练并未引入新推理能力的结论。

知识点: 预训练先验的双重作用
题目: 论文认为预训练先验在RLVR中起到了什么样的双重作用?
选项:
A. 既提高了训练效率,又增加了模型复杂性
B. 既指导了响应生成,又限制了新推理模式的探索
C. 既增强了模型记忆,又削弱了泛化能力
D. 既改进了推理能力,又降低了计算效率

正确答案: B
原文依据: 「Since the sampling of responses is guided by the pretrained prior, the policy may struggle to explore new reasoning patterns beyond what the prior already provides. Specifically, in such a complex and highly combinatorial space, most responses generated during training are constrained by the base model’s prior.」(出自:2504.13837v1.pdf,第12页)
解析: 论文指出预训练先验在RLVR中起到了双重作用:一方面它指导模型生成合理的响应,使探索过程更容易;另一方面它也限制了模型探索超出先验的新推理模式的能力。

知识点: 研究的主要贡献
题目: 论文的主要贡献是什么?
选项:
A. 提出了新的RL算法来提高LLM的推理能力
B. 证明了RLVR是提高LLM推理能力的最佳方法
C. 挑战了RLVR能够引发超越基础模型的推理能力的传统观点
D. 提出了一种新的评估LLM推理能力的方法

正确答案: C
原文依据: 「Our work not only discovers findings that fundamentally challenge previous understanding on RLVR and its impact in reasoning models, but also implies that RLVR in itself might be inadequate to push forward the boundary of reasoning abilities.」(出自:2504.13837v1.pdf,第4页)
解析: 论文的主要贡献是挑战了RLVR能够引发超越基础模型的推理能力的传统观点,通过系统实验证明RLVR主要提高采样效率而非扩展推理边界,并指出RLVR本身可能不足以推进推理能力的边界。

知识点: 可解决问题集合的关系
题目: 论文对RL模型和基础模型可解决问题集合的分析结果是什么?
选项:
A. 两个集合完全相同
B. RL模型的集合是基础模型集合的超集
C. 基础模型的集合是RL模型集合的超集
D. 两个集合有部分重叠但各有独特部分

正确答案: C
原文依据: 「We find that the set of problems solved by the RL-trained model is nearly a subset of the solvable problems of the base model, as shown in Table 4.」(出自:2504.13837v1.pdf,第9页)
解析: 论文通过分析发现,RL训练模型能够解决的问题集合几乎是基础模型可解决问题集合的一个子集,这进一步支持了RL训练并未引入新推理能力的结论。

知识点: 研究对未来工作的启示
题目: 根据论文的发现,未来提高LLM推理能力的可能方向是什么?
选项:
A. 继续优化现有RLVR算法
B. 探索能够超越先验限制的探索方法或全新范式
C. 完全放弃RL方法,转向监督学习
D. 增加模型参数规模以获得更好的基础模型

正确答案: B
原文依据: 「In the future, exploration approaches that can explore beyond the confines of the prior in such a vast action space hold promise for creating more powerful reasoning models. Furthermore, alternative paradigms beyond pure RLVR could also be explored to overcome these limitations and enhance the model’s reasoning capabilities.」(出自:2504.13837v1.pdf,第12页)
解析: 基于研究发现,论文建议未来工作应探索能够超越先验限制的探索方法,或者探索超越纯RLVR的替代范式,以克服当前RLVR的局限性并增强模型的推理能力。

知识点: 研究的实验范围
题目: 论文的实验涵盖了哪些任务领域?
选项:
A. 仅数学推理
B. 数学推理和代码生成
C. 数学推理、代码生成和视觉推理
D. 数学推理、代码生成、视觉推理和自然语言理解

正确答案: C
原文依据: 「We conduct extensive experiments across diverse benchmarks, including mathematics, code generation, and visual reasoning, spanning multiple LLM families, model sizes, and RL algorithms.」(出自:2504.13837v1.pdf,第2页)
解析: 论文的实验涵盖了三个主要任务领域:数学推理、代码生成和视觉推理,并在这些领域中使用了多个LLM家族、模型大小和RL算法进行了广泛测试。

知识点: 研究的核心结论
题目: 论文的核心结论是什么?
选项:
A. RLVR是提高LLM推理能力的最有效方法
B. RLVR主要通过提高采样效率来改进性能,但不会引入超越基础模型的新推理能力
C. RLVR完全无法改进LLM的推理能力
D. RLVR的效果取决于使用的具体RL算法

正确答案: B
原文依据: 「Our findings demonstrate that RLVR does not elicit fundamentally new reasoning patterns. Instead, RL primarily enhances the efficiency of LLMs in sampling existing correct reasoning paths encoded in the base model. Consequently, the reasoning boundary remains limited by the base model’s capabilities.」(出自:2504.13837v1.pdf,第13页)
解析: 论文的核心结论是RLVR并不会引发根本性的新推理模式,而是主要通过提高LLM采样基础模型中已有正确推理路径的效率来改进性能。因此,推理边界仍然受限于基础模型的能力。

知识点总结

本研究深入探讨了可验证奖励强化学习(RLVR)对大型语言模型(LLM)推理能力的真实影响。通过在数学、编程和视觉推理等多个领域的广泛实验,研究发现RLVR并不会引发超越基础模型的新推理能力,而是主要通过提高采样效率来改进性能。具体来说,虽然RL训练模型在小k值时表现更好,但在大k值时基础模型的覆盖范围更广。困惑度分析表明RL模型生成的推理路径已经存在于基础模型的输出分布中。与RLVR不同,蒸馏能够真正引入新知识并扩展模型的推理能力边界。这些发现挑战了RLVR能够使模型持续自我改进的传统观点,并指出未来工作应探索能够超越先验限制的方法或全新范式。

参考资料

April 21, 2025
Does Reinforcement Learning Really Incentivize Reasoning
Capacity in LLMs Beyond the Base Model?
Yang Yue 1 ∗ †
, Zhiqi Chen1 ∗
, Rui Lu1
, Andrew Zhao1
, Zhaokai Wang2
, Yang Yue 1
,
Shiji Song1
, and Gao Huang1 B
1 LeapLab, Tsinghua University 2 Shanghai Jiao Tong University
∗ Equal Contribution † Project Lead B Corresponding Author

评论

发表回复

人生梦想 - 关注前沿的计算机技术 acejoy.com 🐾 步子哥の博客 🐾 背多分论坛 🐾 知差(chai)网