标签: AI

  • 为什么大型语言模型需要适应不同用户群体的偏好?

    大型语言模型(LLMs)是一类强大的人工智能模型,可以处理和生成自然语言文本,如文章、对话和翻译。这些模型在许多任务上表现出色,但它们通常需要经过微调来适应特定的任务或用户需求。

    微调LLMs的常用方法是通过强化学习与人类反馈(RLHF)来调整模型的偏好。这意味着让人类标注者提供关于不同文本选项的偏好,然后通过优化模型的策略来使其更符合这些偏好。然而,这些偏好数据通常来自不同的标注者群体,他们可能具有不同的文化背景、语言特点、年龄、性别等特征。

    传统的RLHF方法存在一个问题,它们采用了所谓的“一刀切”策略,即假设所有群体的偏好是一致的,并且只优化一个单一的偏好模型。然而,不同群体的偏好可能存在差异,这可能导致模型在特定群体中的性能不佳。例如,一个模型在年轻人中可能表现出色,但在年长的用户中则可能表现不佳。

    为了解决这个问题,研究人员提出了一种名为Group Robust Preference Optimization(GRPO)的方法,旨在使LLMs能够更好地适应不同用户群体的偏好。GRPO方法考虑了不同群体的独特特征和需求,并通过优化策略以最大化最差情况下的群体性能来提高模型的鲁棒性。

    GRPO方法是如何工作的?

    GRPO方法通过以下关键步骤来优化LLMs以适应不同用户群体的偏好:

    1. 群体信息整合

    与传统方法不同,GRPO方法将来自不同群体的偏好数据整合到模型训练中。这意味着模型会考虑多个偏好分布,而不是仅仅假设一个单一的分布。

    2. 最坏情况性能优化

    GRPO方法的目标是优化策略,使得模型在最坏情况下的群体性能也能得到最大化。具体而言,它通过最大化不同群体损失的最小值来实现。这意味着模型将努力在最差表现的群体中保持较好的性能。

    3. 自适应权重调整

    GRPO方法根据不同群体的累积损失动态调整权重,以优先考虑那些累积损失较大的群体。这样做可以确保模型更关注性能较差的群体,并在后续的训练中给予它们更多的重视。

    4. 理论分析与算法设计

    为了保证GRPO方法的可行性,研究人员进行了理论分析,并设计了相应的算法来解决群体鲁棒偏好优化问题。他们提供了一些收敛性保证,以确保算法能有效地优化模型策略。

    5. 实验验证

    研究人员在合成数据集和真实世界数据上进行了实验验证GRPO方法的有效性。他们发现,通过使用GRPO方法微调LLMs,可以显著提高最差表现群体的性能,并减少不同群体之间的性能差距。实验结果显示,GRPO方法相比非鲁棒基线在损失和准确性方面取得了显著的改进。

    GRPO方法的应用前景和未来工作

    GRPO方法的提出为解决LLMs在不同用户群体间偏好对齐的问题提供了一种新的解决方案。通过考虑不同群体的特征和需求,GRPO方法能够使模型更加鲁棒和公平,提高用户体验。

    未来的研究可以进一步探索以下方向:

    • 提高算法效率,尤其是在处理大规模数据集和复杂模型时。
    • 更精细的超参数调整策略,以适应不同的应用场景和数据分布。
    • 探索其他类型的损失函数,以进一步提高模型的鲁棒性和性能。
    • 考虑更广泛的群体特征,如文化、语言和社会经济背景,以实现更全面的群体鲁棒性。
    • 在更广泛的实际应用中测试GRPO方法,如医疗、教育和商业领域,以验证其在现实世界中的有效性。
    • 进一步研究群体间和群体内的差异,以及如何平衡这些差异以实现最佳的模型性能。
    • 提高模型的解释性,以更好地理解不同群体偏好如何影响模型的决策。

    通过在这些方向上进行进一步的研究,可以提高GRPO方法的实用性、有效性和泛化能力,从而更好地服务于多样化的用户群体。

    参考文献:

    • Shyam Sundhar Ramesh, Yifan Hu, Iason Chaimalas, Viraj Mehta, Pier Giuseppe Sessa, Haitham Bou Ammar, Ilija Bogunovic. (2024). Group Robust Preference Optimization in Reward-free RLHF. [PDF13] [Copy] [Kimi33]
  • S3D:低内存GPU上的自推测解码方案

    引言

    大型语言模型(Large Language Models,LLMs)在自然语言处理领域起着重要作用,能够生成人类语言的连续文本,为我们提供强大的语言处理能力。然而,LLMs在推理过程中面临一个重要问题,即幻觉(Hallucination)问题。幻觉指的是模型生成看似合理但实际上不准确的信息,这可能导致误导性的结果和信息的传播。

    为了更好地理解和解决LLMs中的幻觉问题,研究者们进行了大量的研究工作。其中一篇关于幻觉问题的研究论文是《S3D. A Simple and Cost-Effective Self-Speculative Decoding Scheme for Low-Memory GPUs》。这篇论文提出了一种名为Skippy Simultaneous Speculative Decoding(简称S3D)的自推测解码方案,旨在解决在低内存GPU上进行LLM推理时的性能和内存限制问题。

    S3D方案解决的问题

    S3D方案的目标是解决在低内存GPU上进行LLM推理时的性能和内存限制问题。传统的推测解码方法在高端设备上实现了显著的加速,但在低内存设备上却存在性能下降的问题。此外,量化带来的内存开销也限制了LLMs在低内存GPU上的应用。因此,S3D方案旨在提供一种成本效益高、适用于低内存GPU的自推测解码方法。

    相关研究

    在幻觉问题的研究领域,已经有许多相关研究取得了重要进展。其中,早期的推测解码方法、多标记预测、雅可比迭代方法、层跳过技术以及其他SD系统等都与S3D方案有一定的关联。

    S3D方案的关键内容

    S3D方案提出了Skippy Simultaneous Speculative Decoding(S3D. 方法,通过同时多标记预测和中层跳过的方式实现自推测解码。S3D方法不需要额外的显存成本,同时具备高训练效率。与其他SD系统相比,S3D方法在性能-内存比率方面表现出色,且无需进行大规模的架构调整和训练数据的修改。

    实验验证

    论文中进行了一系列实验来验证S3D方案的性能。实验结果表明,S3D在性能-内存比率方面表现出色,相较于其他开源SD系统,具有更好的性能。此外,论文还进行了成本效益和速度的比较实验,验证了S3D方案的有效性和实用性。

    进一步的研究方向

    尽管S3D方案已经取得了一定的研究成果,但仍有一些潜在的研究方向值得进一步探索。这些方向包括适配器技术、更广泛的硬件评估、更深入的超参数优化、模型泛化能力、量化和稀疏性、并行化和分布式训练、实时应用、鲁棒性和错误分析、与其他优化技术的集成、用户研究和应用案例等。

    通过进一步的研究探索,可以更好地理解S3D方案的潜绪和局限性,并推动其在更广泛的领域中的应用。

    结论

    《S3D. A Simple and Cost-Effective Self-Speculative Decoding Scheme for Low-Memory GPUs》论文提出了一种名为S3D的自推测解码方案,旨在解决低内存GPU上进行LLM推理时的性能和内存限制问题。S3D方案通过同时多标记预测和中层跳过的方式实现自推测解码,具备成本效益高、训练效率高的优点。实验结果表明S3D在性能和内存比率方面表现出色,并具有实际应用的潜力。进一步的研究可以在适配器技术、更广泛的硬件评估、模型泛化能力等方面开展,以推动S3D方案的发展和应用。

    参考文献:

    • Wei Zhong, Manasa Bharadwaj. “S3D. A Simple and Cost-Effective Self-Speculative Decoding Scheme for Low-Memory GPUs.” 2024.

    S3D (Skippy Simultaneous Speculative Decoding) is a simple and cost-effective self-speculative decoding scheme designed for low-memory GPUs. It aims to achieve fast inference, low VRAM costs, and high training efficiency [1].

    Speculative decoding (SD) is a technique that accelerates low-latency model (LLM) inference without sacrificing quality. It works by drafting tokens at a faster speed and then verifying the guessed tokens at the end of an iteration using a full forward pass. However, existing SD methods often achieve optimal performance on high-end devices or with a substantial GPU memory overhead. When applied to smaller models or low-memory devices where quantization is necessary, these methods can experience significant slowdowns [1].

    To address these challenges, S3D introduces mid-layer skipping and simultaneous multi-token predictions. It offers no added VRAM costs and high training efficiency. By leveraging memory efficiency, S3D demonstrates optimal performance-memory ratios among recent open-source SD models. It can avoid significant quantization overheads under certain VRAM constraints and outperform previous SD methods under 8-bit quantization by up to 3.9x in speedups on A10G GPU [1].

    S3D also provides optimal hyper-parameters by formalizing the relationship between the number of skipped layers and speedup in self-speculative decoding. It can verify the optimal number of token predictors, leading to improved performance [1].

    In summary, S3D is a cost-effective self-speculative decoding scheme that achieves fast inference, low VRAM costs, and high training efficiency for low-memory GPUs. It overcomes the limitations of existing SD methods and demonstrates optimal performance-memory ratios [1].


    Learn more:

    1. S3D. A Simple and Cost-Effective Self-Speculative Decoding Scheme for Low-Memory GPUs
    2. GitHub – hemingkx/SpeculativeDecodingPapers: 📰 Must-read papers and blogs on Speculative Decoding ⚡️
    3. [2309.08168] Draft & Verify: Lossless Large Language Model Acceleration via Self-Speculative Decoding

    S3D是一种简单且经济高效的自我推测解码方案,专为低内存GPU设计。该方法通过同时进行多令牌解码和中间层跳过来实现推测解码,既不增加显存开销,又具有高训练效率[1]

    S3D的主要特点和贡献包括:

    1. 有效的自我推测解码:S3D采用了中间层跳过和同时进行多令牌预测的简单且节省内存的自我推测解码方案。相比之前的方法,S3D在较小的模型上克服了速度上的限制[1]
    2. 最优超参数:S3D通过对自我推测解码中跳过层数和速度提升之间关系的形式化研究,确定了最优的令牌预测器数量[1]
    3. 最优速度-内存比:S3D在最近的开源自我推测解码模型中展现出最优的性能-内存比。通过利用内存效率,S3D可以避免在特定显存限制下进行量化时产生的显著开销,并在A10G GPU上在8位量化下比之前最快的SD方法(EAGLE)提升了3.9倍的速度[1]

    相关工作方面,早期的自我推测解码方法主要集中在特定领域任务上,如翻译和语法错误修正,这些任务很容易实现显著的加速。而S3D则针对通用领域任务,通过同时预测多个令牌和非批处理解码来节省内存并提高训练效率[2]


    Learn more:

    1. S3D. A Simple and Cost-Effective Self-Speculative Decoding Scheme for Low-Memory GPUs
    2. [2405.20314] S3D. A Simple and Cost-Effective Self-Speculative Decoding Scheme for Low-Memory GPUs
    3. GitHub – hemingkx/SpeculativeDecodingPapers: 📰 Must-read papers and blogs on Speculative Decoding ⚡️
  • 分析大型语言模型中的幻觉问题

    引言

    大型语言模型(Large Language Models,LLMs)在自然语言处理领域扮演着重要的角色,它们可以生成人类语言的连续文本,为我们提供了强大的语言处理能力。然而,随着模型规模的增大和训练数据的增加,LLMs也面临着一个严重的问题,即幻觉(Hallucination)问题。幻觉指的是模型生成看似合理但实际上不准确的信息,这可能导致误导性的结果和信息的传播。

    为了更好地理解和解决LLMs中的幻觉问题,研究者们进行了大量的研究工作。其中一篇关于幻觉问题的研究论文是《Analytical Annotation of Hallucinations in Large Language Models (ANAH)》。这篇论文提出了一种分析性注释的方法,以便更详细地研究和量化LLMs中的幻觉问题。

    ANAH数据集:详细注释LLMs中的幻觉

    为了深入研究LLMs中的幻觉问题,研究者们创建了一个名为ANAH的双语数据集。ANAH数据集提供了对LLMs在生成式问答(Generative Question Answering)任务中幻觉问题的分析性注释。数据集中的每个答案句子都经过了严格的注释,包括参考片段的检索、幻觉类型的判断以及对幻觉内容的更正。

    ANAH数据集由人工和自动化注释流程构建而成。通过这个数据集,研究者们能够量化和分析LLMs中幻觉的累积效应,并训练和评估幻觉注释器的性能。实验结果表明,经过训练的生成性幻觉注释器在性能上能够与最先进的模型相媲美,并展现出更好的泛化能力。

    幻觉问题的研究进展

    幻觉问题在自然语言处理领域一直备受关注。研究者们提出了多种方法来解决幻觉问题,包括幻觉检测和评估、幻觉缓解、基准测试、知识增强等。这些方法的目标都是提高模型的可靠性和准确性,减少幻觉的产生。

    例如,为了评估幻觉问题,研究者们构建了各种基准测试集,设计了挑战性的问题,并通过评估答案中幻觉的水平来衡量模型的性能。此外,还有一些研究探索了如何在模型的训练和推理阶段减轻幻觉问题,例如通过多任务学习、模型编辑和强化学习等方法。

    未来的研究方向

    尽管已经取得了一些进展,但解决LLMs中的幻觉问题仍然是一个具有挑战性的任务。未来的研究可以在以下几个方向上进行探索:

    1. 数据集扩展:将ANAH数据集的规模扩大,覆盖更广泛的主题和任务,以更全面地理解和解决幻觉问题。
    2. 模型泛化能力:研究如何提高模型在未见主题和未见问题上的泛化能力,使其能够更好地应对各种情况。
    3. 训练策略优化:探索不同的训练策略,如半监督学习、元学习等,以提高模型在有限数据上的性能和泛化能力。
    4. 提高模型解释性:研究如何提高幻觉注释器的解释性,使其能够提供更详细的解释和证据,以支持其注释和纠正决策。
    5. 多模态和跨语言能力:考虑多模态数据(如图像、视频)和跨语言能力,以提高模型对不同类型输入的理解和生成能力。
    6. 模型鲁棒性:进一步提高模型对对抗性攻击和输入扰动的鲁棒性。
    7. 长期影响评估:评估幻觉注释器在长期应用中的效果,包括用户对模型输出的信任度和依赖性的变化。
    8. 知识更新和维护:研究如何定期更新和维护模型的知识库,以确保其提供的信息是最新和准确的。
    9. 用户定制化和个性化:探索如何根据用户的特定需求和偏好定制化和个性化模型的输出。

    这些研究方向将有助于进一步提高LLMs的可靠性、准确性和用户满意度。

    结论

    本文总结了《Analytical Annotation of Hallucinations in Large Language Models (ANAH)》论文的主要内容。该论文通过创建详细的注释数据集和训练幻觉注释器,提供了一种系统的框架来研究和解决LLMs中的幻觉问题。幻觉注释器能够提高模型的可靠性并减少幻觉的产生。然而,幻觉问题仍然具有挑战性,需要进一步的研究来改进模型的性能和泛化能力。

    参考文献:

    • Ziwei Ji, Yuzhe Gu, Wenwei Zhang, Chengqi Lyu, Dahua Lin, Kai Chen. “Analytical Annotation of Hallucinations in Large Language Models (ANAH).” 2024.
  • 在纯Java文件中推理Llama 2

    在现代人工智能领域,推理大型语言模型(LLM)已经成为一个重要的应用场景。GitHub上的项目 mukel/llama2.java 提供了一种使用纯Java代码进行Llama 2推理的简洁实现。本文将详细介绍该项目的背景、构建方法及性能表现。

    背景介绍

    Llama 2是由Andrej Karpathy开发的一个非常简单的LLM推理实现。该项目的Java版本旨在提供教育价值,并用于在JVM上测试和调整编译器优化,特别是针对Graal编译器的优化。这一Java移植版本最初参考了llama2.scala。

    构建与运行

    要构建和运行该项目,您需要Java 21+,特别是其中的MemorySegment mmap-ing功能。以下是具体的构建步骤:

    1. 下载必要的文件: wget https://github.com/karpathy/llama2.c/raw/master/tokenizer.bin wget https://huggingface.co/karpathy/tinyllamas/resolve/main/stories15M. bin
    2. 手动构建与运行: javac --enable-preview -source 21 --add-modules=jdk.incubator.vector Llama2.java java --enable-preview --add-modules=jdk.incubator.vector Llama2 stories15M. bin
    3. 使用JBang直接运行: jbang Llama2.java stories15M. bin
    4. 使用Makefile和run.sh脚本: make # 可选,run.sh已经包含了make JAVA_HOME=$GRAALVM_HOME \ JAVA_RUNTIME_OPTIONS=-Djava.util.concurrent.ForkJoinPool.common.parallelism=8 \ ./run.sh stories15M. bin

    生成本地镜像

    使用GraalVM可以创建一个独立的本地镜像:

    JAVA_HOME=$GRAALVM_HOME NATIVE_IMAGE_OPTIONS="-march=native" make native-image
    ./llama2 stories15M. bin

    或者使用Profile-Guided Optimizations (PGO):

    JAVA_HOME=$GRAALVM_HOME \
    NATIVE_IMAGE_OPTIONS="--pgo-instrument -march=native --initialize-at-build-time=Llama2 -Dllama2.VectorAPI=false" \
    make native-image
    
    # 生成默认的iprof配置文件
    ./llama2 -Djava.util.concurrent.ForkJoinPool.common.parallelism=0 stories15M. bin
    
    # 构建优化后的镜像
    JAVA_HOME=$GRAALVM_HOME \
    NATIVE_IMAGE_OPTIONS="--pgo -march=native --initialize-at-build-time=Llama2 -Dllama2.VectorAPI=false" \
    make native-image
    
    # 优化后的运行速度应该比普通镜像快约2倍
    ./llama2 stories15M. bin

    性能表现

    以下是该项目在不同配置下的性能测试结果(基于AMD Ryzen 3950X 64GB,Arch Linux):

    单线程测试

    模型每秒处理Token相对于llama2.c的加速实现
    stories15M. bin3631.0llama2.c
    stories15M. bin2370.65llama2.java
    stories110M. bin51.711.0llama2.c
    stories110M. bin42.200.81llama2.java
    llama2_7B. bin0.921.0llama2.c
    llama2_7B. bin0.880.95llama2.java

    多线程测试

    模型每秒处理Token相对于llama2.c的加速实现
    stories15M. bin12331.0llama2.c
    stories15M. bin4380.35llama2.java
    stories110M. bin901.0llama2.c
    stories110M. bin800.88llama2.java
    llama2_7B. bin1.681.0llama2.c
    llama2_7B. bin1.650.98llama2.java

    需要注意的是,Java版本在多线程情况下的性能提升并不显著,这主要是由于内存带宽限制所致。

    结论

    mukel/llama2.java项目展示了如何使用纯Java代码实现Llama 2推理,并在一定程度上达到了与原始C实现相当的性能。尽管当前版本的性能尚未完全优化,但其作为教育工具和编译器优化测试平台已经展现出巨大潜力。

    参考文献:GitHub – mukel/llama2.java

  • 探索 Llama 3 在 Java 中的实际应用

    引言

    在现代人工智能领域,模型推理的效率和方便性是技术人员关注的核心问题。如今,我们将目光投向一个名为 Llama 3 的项目,该项目旨在在 Java 环境中实现 Llama 3 的推理。这一项目不仅是其前身 Llama2.java 的延续,还在多个方面进行了优化和改进。让我们深入了解这个项目的细节及其实现方法。

    项目背景

    Llama 3 是基于 Andrej Karpathy 的 llama2.c 项目的一个扩展版本。Llama3.java 通过单个 Java 文件实现了 Llama 3 的推理,除了教育价值外,还为在 JVM 上测试和调整编译器优化和功能提供了便利,特别是针对 Graal 编译器的优化。

    项目特点

    1. 单文件实现,无依赖

    Llama3.java 的一大特点是其实现是通过单个 Java 文件完成的。这种设计简化了项目的依赖管理,使得项目的部署和维护更加便捷。

    2. 支持多种量化格式

    项目支持 GGUF 格式解析,并且提供了对 Q8_0 和 Q4_0 量化的支持。Q4_0 量化模型由于其较小的体积和较高的运行效率,成为推荐使用的模型。

    3. 高效的矩阵-向量乘法

    针对量化张量,项目使用了 Java 的 Vector API 实现了快速的矩阵-向量乘法。这一实现提高了推理的运行速度,特别是在处理大规模数据时。

    4. 简单的命令行界面

    Llama3.java 提供了一个简单的命令行界面,支持 --chat--instruct 模式,使用户能够方便地与模型进行交互。

    项目设置与运行

    下载量化模型

    首先,需要从 Hugging Face 下载纯 Q4_0 和(可选的)Q8_0 量化的 .gguf 文件。推荐使用大约 4.3GB 的 Q4_0 量化模型:

    curl -L -O https://huggingface.co/mukel/Meta-Llama-3-8B-Instruct-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q4_0.gguf
    
    # 可选地下载 Q8_0 量化模型(约 8GB)
    # curl -L -O https://huggingface.co/mukel/Meta-Llama-3-8B-Instruct-GGUF/resolve/main/Meta-Llama-3-8B-Instruct-Q8_0.gguf

    手动量化

    如果需要生成纯 Q4_0 量化模型,可以使用 llama.cpp 提供的量化工具从高精度的 .gguf 源文件生成:

    ./quantize --pure ./Meta-Llama-3-8B-Instruct-F32.gguf ./Meta-Llama-3-8B-Instruct-Q4_0.gguf Q4_0

    构建与运行

    Llama3.java 需要 Java 21 及以上版本,特别是 MemorySegment mmap-ing 功能。可以使用 jbang 工具运行:

    jbang Llama3.java --help

    或者直接执行:

    chmod +x Llama3.java
    ./Llama3.java --help

    使用 Makefile 手动构建

    项目提供了一个简单的 Makefile,可以运行 make 来生成 llama3.jar:

    javac -g --enable-preview -source 21 --add-modules jdk.incubator.vector -d target/classes Llama3.java
    jar -cvfe llama3.jar com.llama4j.Llama3 LICENSE -C target/classes .

    生成的 jar 文件可以如下运行:

    java --enable-preview --add-modules jdk.incubator.vector -jar llama3.jar --help

    性能评估

    在不同的硬件配置下,Llama3.java 的性能表现如下:

    笔记本电脑 Intel 13900H

    模型tokens/s实现
    Llama-3-8B-Instruct-Q4_0.gguf7.53llama.cpp
    Llama-3-8B-Instruct-Q4_0.gguf6.95llama3.java
    Llama-3-8B-Instruct-Q8_0.gguf5.16llama.cpp
    Llama-3-8B-Instruct-Q8_0.gguf4.02llama3.java

    工作站 AMD 3950X

    模型tokens/s实现
    Llama-3-8B-Instruct-Q4_0.gguf9.26llama.cpp
    Llama-3-8B-Instruct-Q4_0.gguf8.03llama3.java
    Llama-3-8B-Instruct-Q8_0.gguf5.79llama.cpp
    Llama-3-8B-Instruct-Q8_0.gguf4.92llama3.java

    结论

    Llama3.java 在 Java 环境中实现了高效的 Llama 3 模型推理,其单文件实现和简单的命令行界面使其具有很高的实用性。虽然在某些性能指标上与 llama.cpp 存在差距,但其在 Java 生态系统中的表现依然值得肯定。

    参考文献

  • 谷歌投资20亿美元在马来西亚建设数据中心及云区域

    根据马来西亚政府的宣布,美国科技巨头谷歌计划在马来西亚投资20亿美元,建设谷歌在该国的首个数据中心和谷歌云区域,同时推进人工智能领域的发展。这一投资使谷歌成为东南亚地区最新一家注入资金以寻求增长机会的科技巨头[1]

    以下是有关这一投资的详细信息:

    1. 投资规模:谷歌将投资20亿美元(约合27亿新元)在马来西亚建设数据中心和云区域[1]
    2. 地点:数据中心和云区域将建在马来西亚雪兰莪州沙亚南的艾美娜商业园[1]
    3. 经济影响:这项投资预计将为马来西亚医疗保健、教育和金融领域提供2万6500个工作机会,并为制造业和服务业利用人工智能和其他先进技术提升全球价值链,创造约150亿4000万令吉(约43亿1600万新元)的经济总值[1]
    4. 谷歌的战略合作:这项投资是建立在谷歌与马来西亚政府合作推进“云优先政策”的基础上的,包括推动一流的网络安全标准[1]

    此外,谷歌的母公司Alphabet及谷歌的总裁兼首席投资官波拉特表示,这是谷歌在马来西亚运营13年来数额最大的投资计划,也是首次在该国设立数据中心和谷歌云区域[1]

    这项投资计划进一步证明了马来西亚政府的明确规划、国家的经济实力和资源,成功吸引了现有和新的投资者,有助于加速马来西亚的数码转型议程[1]


    Learn more:

    1. 谷歌投资20亿美元在马国建数据中心及云区域 | 联合早报
    2. 谷歌将在马来西亚投资 20 亿美元:建数据中心 / 进一步开发 AI,拟创造 2.65 万个就业岗位 – IT之家
    3. 团结政府拼经济奏效 谷歌投资大马94亿! – DAP
  • autoMate:用AI简化你的数字生活

    引言

    在这个数字化飞速发展的时代,我们的生活越来越依赖于各种软件和应用程序。但是,你有没有想过,如果这些软件能够更加智能,能够理解我们的指令并自动完成一些重复性的任务,那将会怎样?这就是autoMate所承诺的——它就像出行中的共享单车一样,只需3分钟,就能将AI的智能植入到任意一个软件中,让你的数字生活变得更加轻松和高效。

    autoMate是什么?

    autoMate是一个开源免费的项目,它允许用户通过简单的配置,将AI的能力集成到他们日常使用的软件中。无论是自动化工作流程,还是简化复杂的任务,autoMate都能提供强大的支持。

    如何开始使用autoMate?

    如果你是第一次使用autoMate,你只需要进行一些基础的设置。首先,你需要修改配置文件,添加OpenAI的信息。这可以通过在autoMate的左上角点击文件,然后选择components,接着配置OpenAI的相关信息来完成。

    autoMate的主要功能

    autoMate的核心功能是将AI集成到软件中,但它并不止步于此。以下是autoMate的一些主要功能:

    • 自动化任务:autoMate可以帮助你自动化那些重复性高且耗时的任务。
    • 智能决策:通过集成AI,autoMate能够提供智能的决策支持,帮助你更高效地完成工作。
    • 易于配置:即使是没有编程背景的用户,也能够通过简单的配置快速上手autoMate。

    各产品优势对比

    autoMate在众多自动化工具中脱颖而出,它的优势在于其开源免费的特性,以及对AI能力的集成。这使得autoMate不仅能够帮助个人用户提高效率,也能够为企业提供强大的自动化解决方案。

    开源社区的支持

    autoMate完全依赖于开源社区的支持,这意味着它不断地在改进和更新。社区的贡献者们不断地为autoMate添加新功能,修复bug,确保它能够满足用户的需求。

    结语

    autoMate是一个强大的工具,它能够让你的软件更加智能,让你的工作更加高效。无论你是希望简化日常任务,还是想要探索AI的潜力,autoMate都是一个值得尝试的选择。而且,由于它是开源免费的,你没有任何理由不试试这个能够改变你数字生活的神奇工具。

    呼吁行动

    如果你对autoMate感兴趣,不妨访问它的GitHub页面,那里有详细的安装指南和使用文档。同时,如果你觉得autoMate对你有帮助,不妨给它点个star,以示对开源项目的支持和鼓励。


  • 字节AI出海,冲击全球市场

    字节再次展现出海外AI应用开发的强大实力。在过去一年里,字节先后推出了7款基于AI技术的应用产品,覆盖对话助手、互动娱乐、教育等多个领域,并在全球市场取得了亮眼成绩。

    可以说,字节正在努力复制TikTok的出海奇迹,通过AI技术的加持,在海外打造一个又一个爆款应用。

    AI对话助手Cici,占领新兴市场

    Cici是字节推出的海外版AI聊天机器人,同时也是豆包的”孪生姐妹”。与国内版豆包采用自研大模型不同,Cici基于GPT架构。

    尽管在语音交互体验上可能略逊于豆包,但Cici在上线不久后即在阿根廷和秘鲁等市场迅速登顶应用下载榜,成功占领了AI聊天机器人的新兴市场。

    剧情互动平台AnyDoor,探索泛娱乐出海

    AnyDoor是字节推出的AI剧情互动平台,目前已在马来西亚、印度尼西亚等国家上线。用户可以通过AI角色和剧情进行互动体验,类似于”猫箱”的玩法。

    这样的剧情互动应用,正契合了海外用户对于新型娱乐体验的需求。而字节借助AI技术,在泛娱乐出海领域寻找新的突破口。

    AI教育平台Gauth,海外市场广受好评

    在教育领域,字节推出的AI应用Gauth也取得了不俗成绩。Gauth可以帮助用户自动识别并解答试题,同时还提供在线家教等功能,深受海外市场的欢迎。

    Gauth的日活用户已超过200万,位列海外头部教育应用之列。这再次证明,字节在AI领域的布局和投入正在逐步转化为市场影响力。

    全面布局海外AI应用,锚定新的增长引擎

    从总体来看,字节正在全面布局AI应用的海外市场。从对话助手、互动娱乐,到教育工具,再到内容创作,字节的AI产品线已经涵盖了多个细分赛道。

    这无疑体现了字节对于AI时代全球化战略的高度重视。AI技术正在成为其拓展海外市场的新引擎,也为其在全球科技格局中占据更加重要的地位奠定基础。

    对于其他创业公司来说,如何在AI出海赛道上找到自己的机会窗口,将是一大挑战。但字节的成功经验也给了我们启示:选准细分赛道,以单点极致的策略切入,并紧跟市场需求的变化,或许是实现AI出海突破的有效路径。

  • Salesforce带头暴跌,美国软件股全线崩盘,AI时代不转型就是死?

    作者:常嘉帅

    近年来,软件公司的业绩一直是推动其股价飙升的主要动力。然而,最新的财报季显示,这一局面正在发生改变。AI投资的激增,导致企业在传统软件上的支出减少,使得曾经的科技明星公司如Salesforce等面临增长放缓的严峻挑战。

    Salesforce的困境:20年来最惨跌幅

    周四,Salesforce的股价暴跌了约20%,创下近20年来的最大单日跌幅,这不仅拖累了整个软件板块,也使得美股软件板块整体重挫5%,创下两年来最大单日跌幅。Salesforce的全年业绩指引略微下调,同时其四季度财报在营收、利润率等方面均未能达到华尔街的预期。

    根据财报,Salesforce上季的营收仅增长10.7%,创下历史新低。更为糟糕的是,其订单同比涨幅仅有3%,同样刷新了历史最差水平。Salesforce高管承认,重大交易越来越难以敲定,且交易规模普遍缩小,总合同价值指标也罕见地低于两位数增幅。

    这一困境并非Salesforce独有。十家最大的软件公司中,有八家公司在发布最新业绩后股价应声下跌,跌幅平均达9%。隔夜iShares软件ETF(IGV)暴跌近6%。

    AI投资分流资本支出:软件公司面临双重挑战

    分析人士指出,AI热潮对软件公司有两方面的影响。一方面,鉴于AI被视为未来科技发展的终极力量,软件公司不得不在转型之路上加大投入,以免落伍,这无疑影响了营销等其他领域的资本支出;另一方面,软件公司的客户们也在大力投资于AI,导致对传统软件的投资减少。

    例如,Workday上季的订单数据逊色,全年订阅收入预期也出现下调,股价遭遇八年来最惨重挫。其CEO坦言,客户正在压缩续约时的员工使用授权数量,削减采购规模。而Snowflake则因大笔投入AI导致利润率预期大幅下调,遭投资者抛售。

    如何应对AI浪潮的冲击?

    尽管当前的财报季表现疲软,部分科技巨头已经尝到了AI转型的甜头。以微软为例,依靠其ChatGPT等生成式AI服务,公司目前的营收增速已超过Salesforce等老牌竞争对手。

    投行奥本海默分析师Brian Schwartz认为,Salesforce等软件公司本季度成绩“令人失望”,疲软表现可能意味着AI支出抢走了其他方向的投资,并且拖累了这些公司的招聘步伐。德意志银行分析师Brad Zelnick指出,虽然多头可能会觉得这只是一个季度的表现,但他认为,糟糕的财报已经让软件公司的AI应用道路及其最终货币化前景蒙上重重疑问。

    尽管如此,包括Salesforce在内的软件公司并未坐以待毙,正在纷纷加大对AI的投入,谋求在这场升级换代浪潮中取得突破,为客户提供更加智能和高效的软件产品。然而,要证明人工智能真能为它们带来丰厚回报,以抵消当前增长乏力的影响,仍需要一个漫长的过程。

    参考文献

    • 常嘉帅. Salesforce带头暴跌,美国软件股全线崩盘,AI时代不转型就是死?
  • 谷歌Gemini悄然崛起,中文能力超越GPT-4o!

    初露锋芒时的Gemini

    自从谷歌推出Gemini大模型以来,它一直在不断进化和提升。尽管最初亮相时,Gemini相较于OpenAI的GPT-4o显得略逊一筹,但这并未阻止谷歌持续进行迭代和优化。如今,Gemini已经展现出强大的实力,尤其是在中文处理能力方面,甚至超越了GPT-4o。

    最新测试结果:Gemini逼近GPT-4o

    在最新的综合测试中,Gemini 1.5 Pro和Advanced版本分别排在第二和第三位,几乎追平了GPT-4o。而轻量版的Gemini 1.5 flash也表现不俗,排在第九位,超越了Llama-3-70b,并接近GPT-4。

    值得注意的是,Gemini的性能提升不仅仅体现在排名上。相比4月份的版本,Gemini Pro和Flash的能力有了显著加强,尤其在上下文长度上更是达到了惊人的100万token,相比之下,GPT-4的上下文长度仅为12.8万token。

    中文能力的惊人表现

    特别值得一提的是,Gemini在中文处理能力上表现出色。在中文测试中,Gemini Pro和Advanced双双超越了GPT-4o,分别排在第一和第二位。这个成绩不仅显示了谷歌在多语言处理方面的技术实力,也为中文用户带来了更多期待。

    突破重重挑战的Hard Prompts测试

    在更具挑战性的Hard Prompts测试中,Gemini同样表现优异。该测试要求大模型面对更加复杂和棘手的问题,而Gemini 1.5 Pro在这一测试中排名第二,仅次于GPT-4o。这一成绩再次证明了Gemini在处理复杂任务时的卓越能力。

    技术底蕴的深厚积累

    尽管在两周前的更新撞档时,Gemini因表现不佳而遭遇了不少批评,甚至有科技博客指出,尽管谷歌对1.5 Pro进行了数月的改进,但在常识推理、多模态能力和代码能力上,仍无法与GPT-4o媲美。然而,经过一段时间的快速提升,谷歌Gemini如今的表现已经有了质的飞跃,显示出谷歌在AI领域强大的技术积累和持续创新的能力。

    结语

    谷歌Gemini的快速崛起和显著进步,尤其是在中文处理能力上的超越,显示了谷歌在AI技术上的深厚实力和不懈追求。尽管挑战依旧存在,但Gemini的未来无疑值得期待。


    参考文献

    常嘉帅, “谷歌Gemini“悄悄变强”,快速缩小与GPT-4o差距,中文更是完成了超越!”

人生梦想 - 关注前沿的计算机技术 acejoy.com