JStarCraft RNS: 一款全面的Java推荐与搜索引擎

在信息爆炸的时代,如何从海量信息中找到我们真正需要的内容,成为了一个重要问题。JStarCraft RNS 应运而生,它是一款专注于解决推荐领域与搜索领域的两个核心问题:排序预测(Ranking)和评分预测(Rating)的Java推荐与搜索引擎。它为相关领域的研发人员提供完整的通用设计与参考实现,涵盖了70多种排序预测与评分预测算法,是目前最快速、最全面的Java推荐与搜索引擎之一。

JStarCraft RNS 的核心优势

JStarCraft RNS 拥有以下几个核心优势:

  • 跨平台: 支持多种操作系统,方便用户在不同环境下使用。
  • 串行与并行计算: 灵活适应不同场景,提高计算效率。
  • CPU与GPU硬件加速: 充分利用硬件资源,提升性能。
  • 模型保存与装载: 方便用户保存和复用训练好的模型。
  • 丰富的推荐与搜索算法: 提供了多种排序和评分算法,满足不同需求。
  • 丰富的脚本支持: 支持多种脚本语言,例如 Groovy、JS、Lua、MVEL、Python 和 Ruby,方便用户定制化开发。
  • 丰富的评估指标: 提供了多种排序和评分指标,帮助用户评估模型性能。

JStarCraft RNS 的安装与使用

JStarCraft RNS 要求使用者具备以下环境:

  • JDK 8 或者以上
  • Maven 3

安装步骤:

  1. 安装 JStarCraft-Core 框架:
   git clone https://github.com/HongZhaoHua/jstarcraft-core.git
   mvn install -Dmaven.test.skip=true
  1. 安装 JStarCraft-AI 框架:
   git clone https://github.com/HongZhaoHua/jstarcraft-ai.git
   mvn install -Dmaven.test.skip=true
  1. 安装 JStarCraft-RNS 引擎:
   git clone https://github.com/HongZhaoHua/jstarcraft-rns.git
   mvn install -Dmaven.test.skip=true

使用步骤:

  1. 设置依赖: 在您的项目中添加 JStarCraft RNS 的 Maven 或 Gradle 依赖。
  2. 构建配置器: 使用 Configurator 类加载配置文件,配置模型训练和评估参数。
  3. 训练与评估模型: 使用 RankingTaskRatingTask 类训练和评估模型,并获取模型评估指标。
  4. 获取模型: 使用 task.getModel() 方法获取训练好的模型。

JStarCraft RNS 的架构与概念

JStarCraft RNS 的核心概念包括:

  • 信息检索: 由于信息过载,信息检索的任务就是联系用户和信息,帮助用户找到对自己有价值的信息,并帮助信息暴露给对它感兴趣的用户。
  • 搜索与推荐: 搜索是主动明确的,推荐是被动模糊的。两者是互补的工具。
  • 排序预测(Ranking)与评分预测(Rating): Ranking 算法基于隐式反馈数据,关注用户的排序偏好;Rating 算法基于显示反馈数据,关注用户的评分满意度。

JStarCraft RNS 的示例

JStarCraft RNS 支持多种脚本语言,例如 BeanShell、Groovy、JS、Kotlin、Lua、Python 和 Ruby。用户可以使用这些脚本语言定制化开发模型训练和评估流程。

例如,以下代码展示了如何使用 BeanShell 脚本训练和评估模型:

// 构建配置
keyValues = new Properties();
keyValues.load(loader.getResourceAsStream("data.properties"));
keyValues.load(loader.getResourceAsStream("model/benchmark/randomguess-test.properties"));
configurator = new Configurator(keyValues);

// 此对象会返回给Java程序
_data = new HashMap();

// 构建排序任务
task = new RankingTask(RandomGuessModel.class, configurator);
// 训练与评估模型并获取排序指标
measures = task.execute();
_data.put("precision", measures.get(PrecisionEvaluator.class));
_data.put("recall", measures.get(RecallEvaluator.class));

// 构建评分任务
task = new RatingTask(RandomGuessModel.class, configurator);
// 训练与评估模型并获取评分指标
measures = task.execute();
_data.put("mae", measures.get(MAEEvaluator.class));
_data.put("mse", measures.get(MSEEvaluator.class));

_data;

JStarCraft RNS 的对比

JStarCraft RNS 提供了丰富的排序和评分算法,用户可以根据自己的需求选择合适的算法。它还提供了一系列评估指标,帮助用户评估模型性能。

例如,以下表格展示了 JStarCraft RNS 中提供的部分排序算法和评分算法的对比:

算法名称问题说明/论文
RandomGuessRanking Rating随机猜测
MostPopularRanking最受欢迎
ConstantGuessRating常量猜测
GlobalAverageRating全局平均
ItemAverageRating物品平均
ItemClusterRating物品聚类
UserAverageRating用户平均
UserClusterRating用户聚类
AoBPRRankingImproving pairwise learning for item recommendation from implicit feedback
BPRRankingBPR: Bayesian Personalized Ranking from Implicit Feedback
CLiMFRankingCLiMF: learning to maximize reciprocal rank with collaborative less-is-more filtering
EALSRankingCollaborative filtering for implicit feedback dataset
FISMRankingFISM: Factored Item Similarity Models for Top-N Recommender Systems
GBPRRankingGBPR: Group Preference Based Bayesian Personalized Ranking for One-Class Collaborative Filtering
HMMForCFRankingA Hidden Markov Model Purpose: A class for the model, including parameters
ItemBigramRankingTopic Modeling: Beyond Bag-of-Words
LambdaFMRankingLambdaFM: Learning Optimal Ranking with Factorization Machines Using Lambda Surrogates
LDARankingLatent Dirichlet Allocation for implicit feedback
ListwiseMFRankingList-wise learning to rank with matrix factorization for collaborative filtering
PLSARankingLatent semantic models for collaborative filtering
RankALSRankingAlternating Least Squares for Personalized Ranking
RankSGDRankingCollaborative Filtering Ensemble for Ranking
SLIMRankingSLIM: Sparse Linear Methods for Top-N Recommender Systems
WBPRRankingBayesian Personalized Ranking for Non-Uniformly Sampled Items
WRMFRankingCollaborative filtering for implicit feedback datasets
Rank-GeoFMRankingRank-GeoFM: A ranking based geographical factorization method for point of interest recommendation
SBPRRankingLeveraging Social Connections to Improve Personalized Ranking for Collaborative Filtering
AssociationRuleRankingA Recommendation Algorithm Using Multi-Level Association Rules
PRankDRankingPersonalised ranking with diversity
AsymmetricSVD++RatingFactorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model
AutoRecRatingAutoRec: Autoencoders Meet Collaborative Filtering
BPMFRatingBayesian Probabilistic Matrix Factorization using Markov Chain Monte Carlo
CCDRatingLarge-Scale Parallel Collaborative Filtering for the Netflix Prize
FFMRatingField Aware Factorization Machines for CTR Prediction
GPLSARatingCollaborative Filtering via Gaussian Probabilistic Latent Semantic Analysis
IRRGRatingExploiting Implicit Item Relationships for Recommender Systems
MFALSRatingLarge-Scale Parallel Collaborative Filtering for the Netflix Prize
NMFRatingAlgorithms for Non-negative Matrix Factorization
PMFRatingPMF: Probabilistic Matrix Factorization
RBMRatingRestricted Boltzman Machines for Collaborative Filtering
RF-RecRatingRF-Rec: Fast and Accurate Computation of Recommendations based on Rating Frequencies
SVD++RatingFactorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model
URPRatingUser Rating Profile: a LDA model for rating prediction
RSTERatingLearning to Recommend with Social Trust Ensemble
SocialMFRatingA matrix factorization technique with trust propagation for recommendation in social networks
SoRecRatingSoRec: Social recommendation using probabilistic matrix factorization
SoRegRatingRecommender systems with social regularization
TimeSVD++RatingCollaborative Filtering with Temporal Dynamics
TrustMFRatingSocial Collaborative Filtering by Trust
TrustSVDRatingTrustSVD: Collaborative Filtering with Both the Explicit and Implicit Influence of User Trust and of Item Ratings
PersonalityDiagnosisRatingA brief introduction to Personality Diagnosis
SlopeOneRatingSlope One Predictors for Online Rating-Based Collaborative Filtering
EFMRanking RatingExplicit factor models for explainable recommendation based on phrase-level sentiment analysis
TF-IDFRanking词频-逆文档频率
HFTRatingHidden factors and hidden topics: understanding rating dimensions with review text
TopicMFRatingTopicMF: Simultaneously Exploiting Ratings and Reviews for Recommendation

总结

JStarCraft RNS 是一款功能强大、易于使用、性能优异的 Java 推荐与搜索引擎。它为相关领域的研发人员提供了全面的通用设计与参考实现,是构建推荐与搜索系统不可或缺的工具。

参考文献:

0 0 投票数
Article Rating
订阅评论
提醒
0 评论
最多投票
最新 最旧
内联反馈
查看所有评论
人生梦想 - 关注前沿的计算机技术 acejoy.com
0
希望看到您的想法,请您发表评论x