借一步网
作者:
在
大型语言模型 (LLMs) 正在改变我们的世界,但其高昂的训练成本一直是阻碍其发展的重要因素。为了解决这一问题,微软研究人员提出了一种名为 FP8-LM 的新框架,利用 FP8 低精度训练,将训练成本降低了 50%。
FP8 是下一代低精度数据类型,相比传统的 FP16 和 FP32,它可以实现两倍的速度提升,同时将内存和通信成本降低 50% 至 75%。然而,目前对 FP8 训练的支持非常有限,仅有的框架是 Nvidia Transformer Engine (TE),但它只将 FP8 应用于矩阵乘法计算,其他操作仍然使用高精度,因此无法充分发挥 FP8 的优势。
FP8-LM 框架的核心思想是将 FP8 计算、存储和通信渗透到整个 LLM 训练过程中,实现前向和后向传递都使用 FP8,从而大幅减少系统工作负载。
具体而言,FP8-LM 提供了三个优化级别,逐步整合 FP8 到混合精度和分布式训练中:
使用 FP8 训练 LLM 面临着数据下溢或上溢等挑战,以及由于 FP8 数据格式的动态范围和精度有限而产生的量化误差。为了解决这些问题,FP8-LM 提出了两种技术:
实验结果表明,FP8-LM 在各种模型规模上都取得了显著的性能提升:
FP8-LM 框架不仅适用于预训练阶段,也适用于下游微调任务,包括指令调整和人类偏好对齐。
FP8-LM 的发布为下一代低精度训练系统树立了新的典范,它将推动大型基础模型的进一步发展。未来,研究人员将继续探索 FP8-LM 的应用,例如:
总结: FP8-LM 框架是 LLM 训练领域的一项重大突破,它为降低训练成本、提高训练效率开辟了新的道路,将推动下一代大型基础模型的快速发展。
要发表评论,您必须先登录。
大型语言模型 (LLMs) 正在改变我们的世界,但其高昂的训练成本一直是阻碍其发展的重要因素。为了解决这一问题,微软研究人员提出了一种名为 FP8-LM 的新框架,利用 FP8 低精度训练,将训练成本降低了 50%。
FP8:下一代低精度训练的突破
FP8 是下一代低精度数据类型,相比传统的 FP16 和 FP32,它可以实现两倍的速度提升,同时将内存和通信成本降低 50% 至 75%。然而,目前对 FP8 训练的支持非常有限,仅有的框架是 Nvidia Transformer Engine (TE),但它只将 FP8 应用于矩阵乘法计算,其他操作仍然使用高精度,因此无法充分发挥 FP8 的优势。
FP8-LM:全方位 FP8 训练框架
FP8-LM 框架的核心思想是将 FP8 计算、存储和通信渗透到整个 LLM 训练过程中,实现前向和后向传递都使用 FP8,从而大幅减少系统工作负载。
具体而言,FP8-LM 提供了三个优化级别,逐步整合 FP8 到混合精度和分布式训练中:
挑战与解决方案
使用 FP8 训练 LLM 面临着数据下溢或上溢等挑战,以及由于 FP8 数据格式的动态范围和精度有限而产生的量化误差。为了解决这些问题,FP8-LM 提出了两种技术:
显著的性能提升
实验结果表明,FP8-LM 在各种模型规模上都取得了显著的性能提升:
广泛的适用性
FP8-LM 框架不仅适用于预训练阶段,也适用于下游微调任务,包括指令调整和人类偏好对齐。
未来展望
FP8-LM 的发布为下一代低精度训练系统树立了新的典范,它将推动大型基础模型的进一步发展。未来,研究人员将继续探索 FP8-LM 的应用,例如:
参考文献
总结: FP8-LM 框架是 LLM 训练领域的一项重大突破,它为降低训练成本、提高训练效率开辟了新的道路,将推动下一代大型基础模型的快速发展。