借一步网
作者:
在
大型语言模型 (LLM) 正在改变世界,从生成文本到翻译语言,再到编写代码,LLM 的应用范围越来越广。然而,LLM 的推理速度一直是制约其应用的关键因素。为了解决这个问题,研究人员一直在探索各种方法来加速 LLM 推理。
本文将介绍一篇名为 “FlashDecoding++: Faster Large Language Model Inference on GPUs” 的论文,该论文提出了一种新的 LLM 推理加速技术,可以在 GPU 上显著提高推理速度。
加速 LLM 推理面临着三大挑战:
FlashDecoding++ 针对上述挑战提出了以下解决方案:
FlashDecoding++ 的优化策略使其在 NVIDIA 和 AMD GPU 上都取得了显著的性能提升,与 Hugging Face 实现相比,分别实现了高达 4.86 倍和 2.18 倍的加速。与主流 LLM 上最先进的 LLM 推理引擎相比,FlashDecoding++ 的平均加速比为 1.37 倍。
FlashDecoding++ 提出了一套全面的 LLM 推理加速解决方案,有效地解决了 LLM 推理中的三大挑战。其在主流 LLM 和硬件平台上的出色表现,为 LLM 的广泛应用提供了强有力的支持。
注: 本文仅对 FlashDecoding++ 论文进行了简要介绍,更多细节请参考原文。
在GPU上推理大规模语言模型(LLM)的性能至关重要,而FlashDecoding++是一款针对LLM推理的快速引擎,通过解决同步部分softmax更新、未充分利用的扁平化GEMM计算和静态数据流等挑战,实现了显着的推理加速效果。
解决同步部分softmax更新的挑战:FlashDecoding++引入了异步softmax和统一最大值的技术,避免了在计算部分softmax结果时需要同步更新的问题。每个部分softmax结果可以独立进行处理,无需进行同步操作,从而减少了计算中的开销。
解决未充分利用的扁平化GEMM计算的挑战:FlashDecoding++通过双缓冲技术对扁平化GEMM计算进行了优化,隐藏了内存访问延迟,提高了计算利用率。它在共享内存中分配了两个独立的缓冲区,一个缓冲区用于进行GEMM计算,而另一个缓冲区则用于加载下一个GEMM操作所需的数据。通过这种方式,计算和内存访问可以同时进行,实现了计算与存储的重叠。
解决静态数据流的挑战:FlashDecoding++采用了启发式数据流和硬件资源适应的方法。它根据输入动态和硬件配置,在不同的线性工作负载下动态优化数据流,选择最佳的实现方式。通过根据不同工作负载的特点进行灵活调整,FlashDecoding++实现了最佳的推理性能。
性能评估:FlashDecoding++在多个硬件平台上进行了性能评估,包括NVIDIA和AMD的GPU。与Hugging Face、vLLM、DeepSpeed、TensorRT-LLM、OpenPPL和FlashDecoding等LLM推理引擎进行了比较。结果表明,FlashDecoding++相对于这些基线引擎实现了显着的加速效果,提供了高达4.86倍的推理速度提升。
要发表评论,您必须先登录。
大型语言模型 (LLM) 正在改变世界,从生成文本到翻译语言,再到编写代码,LLM 的应用范围越来越广。然而,LLM 的推理速度一直是制约其应用的关键因素。为了解决这个问题,研究人员一直在探索各种方法来加速 LLM 推理。
本文将介绍一篇名为 “FlashDecoding++: Faster Large Language Model Inference on GPUs” 的论文,该论文提出了一种新的 LLM 推理加速技术,可以在 GPU 上显著提高推理速度。
LLM 推理加速的挑战
加速 LLM 推理面临着三大挑战:
FlashDecoding++ 的解决方案
FlashDecoding++ 针对上述挑战提出了以下解决方案:
性能提升
FlashDecoding++ 的优化策略使其在 NVIDIA 和 AMD GPU 上都取得了显著的性能提升,与 Hugging Face 实现相比,分别实现了高达 4.86 倍和 2.18 倍的加速。与主流 LLM 上最先进的 LLM 推理引擎相比,FlashDecoding++ 的平均加速比为 1.37 倍。
总结
FlashDecoding++ 提出了一套全面的 LLM 推理加速解决方案,有效地解决了 LLM 推理中的三大挑战。其在主流 LLM 和硬件平台上的出色表现,为 LLM 的广泛应用提供了强有力的支持。
参考文献
注: 本文仅对 FlashDecoding++ 论文进行了简要介绍,更多细节请参考原文。
在GPU上推理大规模语言模型(LLM)的性能至关重要,而FlashDecoding++是一款针对LLM推理的快速引擎,通过解决同步部分softmax更新、未充分利用的扁平化GEMM计算和静态数据流等挑战,实现了显着的推理加速效果。
解决同步部分softmax更新的挑战:
FlashDecoding++引入了异步softmax和统一最大值的技术,避免了在计算部分softmax结果时需要同步更新的问题。每个部分softmax结果可以独立进行处理,无需进行同步操作,从而减少了计算中的开销。
解决未充分利用的扁平化GEMM计算的挑战:
FlashDecoding++通过双缓冲技术对扁平化GEMM计算进行了优化,隐藏了内存访问延迟,提高了计算利用率。它在共享内存中分配了两个独立的缓冲区,一个缓冲区用于进行GEMM计算,而另一个缓冲区则用于加载下一个GEMM操作所需的数据。通过这种方式,计算和内存访问可以同时进行,实现了计算与存储的重叠。
解决静态数据流的挑战:
FlashDecoding++采用了启发式数据流和硬件资源适应的方法。它根据输入动态和硬件配置,在不同的线性工作负载下动态优化数据流,选择最佳的实现方式。通过根据不同工作负载的特点进行灵活调整,FlashDecoding++实现了最佳的推理性能。
性能评估:
FlashDecoding++在多个硬件平台上进行了性能评估,包括NVIDIA和AMD的GPU。与Hugging Face、vLLM、DeepSpeed、TensorRT-LLM、OpenPPL和FlashDecoding等LLM推理引擎进行了比较。结果表明,FlashDecoding++相对于这些基线引擎实现了显着的加速效果,提供了高达4.86倍的推理速度提升。