标签: AI

  • 多头自注意力机制详解:手把手计算现代AI的基石

    1. 引言

    在现代人工智能领域,多头自注意力机制(Multi-Headed Self Attention, MHSA)可以说是最重要的架构范式之一。它是Transformer模型的核心组件,而Transformer又是当前最先进的大型语言模型的基础架构。本文将深入浅出地解析多头自注意力机制的工作原理,通过手动计算的方式,让读者对其内部运作有一个直观而全面的理解。

    2. 多头自注意力机制的背景

    在深入MHSA之前,我们先简要回顾一下自然语言处理(NLP)领域的相关发展历程。早期的NLP模型主要依赖于循环神经网络(RNN)和长短期记忆网络(LSTM)等序列模型。这些模型虽然能够处理序列数据,但在处理长序列时存在长期依赖问题。

    2017年,Google提出了Transformer模型,其核心就是多头自注意力机制。MHSA能够并行处理输入序列,捕捉序列中的长距离依赖关系,大大提高了模型的性能和效率。自此,MHSA成为了NLP领域的主流技术,被广泛应用于各种大型语言模型中。

    3. 多头自注意力机制的工作原理

    让我们通过一个具体的例子,step by step地计算多头自注意力机制的输出。我们将遵循以下步骤:

    1. 定义输入
    2. 定义可学习参数
    3. 计算查询(Query)、键(Key)和值(Value)
    4. 划分多个注意力头
    5. 计算Z矩阵
    6. 掩码操作
    7. 计算注意力矩阵
    8. 计算注意力头的输出
    9. 拼接多个注意力头的输出

    3.1 定义输入

    MHSA可以应用于各种类型的数据,但通常情况下,输入是一个向量序列。在自然语言处理中,这通常是词嵌入(word embedding)与位置编码(positional encoding)的组合。

    假设我们有一个简单的输入序列,包含3个词,每个词用4维向量表示:

    Input = [
        [1, 2, 3, 4],
        [5, 6, 7, 8],
        [9, 10, 11, 12]
    ]

    这个4×3的矩阵代表了我们的输入序列。

    3.2 定义可学习参数

    MHSA主要学习三个权重矩阵,用于构造”查询”(Query)、”键”(Key)和”值”(Value)。在本例中,我们假设模型已经学习到了以下权重矩阵:

    W_Q = [
        [0.1, 0.2],
        [0.3, 0.4],
        [0.5, 0.6],
        [0.7, 0.8]
    ]
    
    W_K = [
        [0.1, 0.2],
        [0.3, 0.4],
        [0.5, 0.6],
        [0.7, 0.8]
    ]
    
    W_V = [
        [0.1, 0.2],
        [0.3, 0.4],
        [0.5, 0.6],
        [0.7, 0.8]
    ]

    这些4×2的矩阵代表了模型的可学习参数。

    3.3 计算查询、键和值

    接下来,我们将输入与权重矩阵相乘,得到查询、键和值:

    Query = Input * W_Q
    Key = Input * W_K
    Value = Input * W_V

    让我们计算Query:

    Query = [
        [1*0.1 + 2*0.3 + 3*0.5 + 4*0.7, 1*0.2 + 2*0.4 + 3*0.6 + 4*0.8],
        [5*0.1 + 6*0.3 + 7*0.5 + 8*0.7, 5*0.2 + 6*0.4 + 7*0.6 + 8*0.8],
        [9*0.1 + 10*0.3 + 11*0.5 + 12*0.7, 9*0.2 + 10*0.4 + 11*0.6 + 12*0.8]
    ]
    
    Query = [
        [5.0, 6.0],
        [13.0, 15.0],
        [21.0, 24.0]
    ]

    同理可得Key和Value:

    Key = [
        [5.0, 6.0],
        [13.0, 15.0],
        [21.0, 24.0]
    ]
    
    Value = [
        [5.0, 6.0],
        [13.0, 15.0],
        [21.0, 24.0]
    ]

    3.4 划分多个注意力头

    多头自注意力机制的”多头”体现在这一步。我们将Query、Key和Value划分为多个子矩阵,每个子矩阵对应一个注意力头。在本例中,我们使用两个注意力头:

    Query_1 = [
        [5.0],
        [13.0],
        [21.0]
    ]
    
    Query_2 = [
        [6.0],
        [15.0],
        [24.0]
    ]
    
    Key_1 = [
        [5.0],
        [13.0],
        [21.0]
    ]
    
    Key_2 = [
        [6.0],
        [15.0],
        [24.0]
    ]
    
    Value_1 = [
        [5.0],
        [13.0],
        [21.0]
    ]
    
    Value_2 = [
        [6.0],
        [15.0],
        [24.0]
    ]

    这样,我们就得到了两组Query、Key和Value,分别用于两个注意力头的计算。

    3.5 计算Z矩阵

    接下来,我们需要计算Z矩阵,这是构造注意力矩阵的中间步骤。Z矩阵由Query和Key的矩阵乘法得到。我们以第一个注意力头为例:

    Z_1 = Query_1 * Key_1^T
    
    Z_1 = [
        [5.0],    [5.0, 13.0, 21.0]
        [13.0], *
        [21.0]
    ]
    
    Z_1 = [
        [5.0*5.0, 5.0*13.0, 5.0*21.0],
        [13.0*5.0, 13.0*13.0, 13.0*21.0],
        [21.0*5.0, 21.0*13.0, 21.0*21.0]
    ]
    
    Z_1 = [
        [25, 65, 105],
        [65, 169, 273],
        [105, 273, 441]
    ]

    为了防止Z矩阵的值随着序列长度的增加而过大,我们通常会将Z矩阵除以序列长度的平方根。在本例中,序列长度为3,所以我们将Z_1除以\sqrt{3}:

    Z_1 = [
        [14.43, 37.53, 60.62],
        [37.53, 97.58, 157.62],
        [60.62, 157.62, 254.62]
    ]

    同理可得Z_2。

    3.6 掩码操作

    在某些应用场景中,如语言模型预测下一个词时,我们需要进行掩码操作,以确保模型在预测时不会”看到”未来的信息。这通常通过将Z矩阵中的某些位置设置为负无穷来实现。在本例中,我们假设不需要掩码操作。

    3.7 计算注意力矩阵

    注意力矩阵是通过对Z矩阵的每一行进行softmax运算得到的。softmax函数的定义如下:

    softmax(x_i) = \frac{e^{x_i}}{\sum_j e^{x_j}}

    让我们以Z_1的第一行为例计算softmax:

    row = [14.43, 37.53, 60.62]
    e_row = [1,850,752, 20,215,372,293, 1,800,537,936,918]
    sum_e_row = 1,822,604,060,963
    
    softmax(row) = [
        1,850,752 / 1,822,604,060,963,
        20,215,372,293 / 1,822,604,060,963,
        1,800,537,936,918 / 1,822,604,060,963
    ]
    
    softmax(row) ≈ [0.001, 0.011, 0.988]

    对Z_1的每一行都进行这样的计算,我们就得到了注意力矩阵Attention_1:

    Attention_1 ≈ [
        [0.001, 0.011, 0.988],
        [0.000, 0.000, 1.000],
        [0.000, 0.000, 1.000]
    ]

    同理可得Attention_2。

    3.8 计算注意力头的输出

    得到注意力矩阵后,我们将其与Value相乘,得到每个注意力头的输出:

    Output_1 = Attention_1 * Value_1
    
    Output_1 ≈ [
        [0.001*5.0 + 0.011*13.0 + 0.988*21.0],
        [0.000*5.0 + 0.000*13.0 + 1.000*21.0],
        [0.000*5.0 + 0.000*13.0 + 1.000*21.0]
    ]
    
    Output_1 ≈ [
        [20.86],
        [21.00],
        [21.00]
    ]

    同理可得Output_2。

    3.9 拼接多个注意力头的输出

    最后,我们将所有注意力头的输出拼接起来,得到多头自注意力机制的最终输出:

    Final_Output = [Output_1 | Output_2]
    
    Final_Output ≈ [
        [20.86, 24.00],
        [21.00, 24.00],
        [21.00, 24.00]
    ]

    这个3×2的矩阵就是多头自注意力机制的输出结果。

    4. 多头自注意力机制的优势

    通过上述计算过程,我们可以看出多头自注意力机制具有以下优势:

    1. 并行计算: MHSA可以并行处理输入序列中的所有元素,大大提高了计算效率。
    2. 捕捉多种关系: 通过使用多个注意力头,模型可以同时关注输入序列中的不同特征和关系。
    3. 长距离依赖: MHSA可以有效捕捉序列中的长距离依赖关系,克服了RNN等传统模型的局限性。
    4. 灵活性: MHSA可以应用于各种类型的序列数据,不仅限于自然语言处理。
    5. 可解释性: 注意力权重可以提供模型决策过程的一定解释性,有助于理解模型的工作原理。

    5. 多头自注意力机制的应用

    MHSA在自然语言处理领域有广泛的应用,包括但不限于:

    1. 机器翻译: Transformer模型在机器翻译任务中取得了突破性的成果。
    2. 文本生成: GPT系列模型使用了基于MHSA的架构,能够生成高质量的文本。
    3. 问答系统: BERT等模型在问答任务中表现出色,为智能问答系统提供了强大的支持。
    4. 文本分类: MHSA可以有效捕捉文本的语义特征,提高分类准确率。
    5. 语音识别: 在语音识别任务中,MHSA也展现出了优秀的性能。
    6. 图像处理: 虽然最初设计用于NLP任务,但MHSA也被成功应用于计算机视觉领域。

    6. 结论

    多头自注意力机制是现代人工智能,特别是自然语言处理领域的核心技术之一。通过本文的详细计算过程,我们深入了解了MHSA的工作原理。尽管实际应用中的计算规模要大得多,但基本原理是相同的。

    理解MHSA的工作原理对于深入学习和应用先进的AI技术至关重要。随着技术的不断发展,我们可以期待MHSA在更多领域发挥重要作用,推动人工智能技术的进步。

    参考文献

    1. Warfield, D. (2024). Multi-Headed Self Attention — By Hand. Intuitively and Exhaustively Explained. https://iaee.substack.com/p/multi-headed-self-attention-by-hand
    2. Vaswani, A. , Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., … & Polosukhin, I. (2017). Attention is all you need. Advances in neural information processing systems, 30.
  • 使用OpenVINO GenAI Flavor运行大语言模型

    随着人工智能技术的快速发展,大语言模型(Large Language Models, LLMs)在自然语言处理领域扮演着越来越重要的角色。然而,这些模型通常规模庞大、计算密集,给部署和推理带来了巨大挑战。为了解决这一问题,英特尔推出了OpenVINO GenAI Flavor,这是一个专门针对生成式AI模型优化的推理引擎。本文将详细介绍如何使用OpenVINO GenAI Flavor来高效运行LLMs,帮助开发者充分发挥硬件性能,实现快速、高效的模型推理。

    OpenVINO GenAI Flavor概述

    OpenVINO GenAI Flavor是OpenVINO工具套件的一个专门版本,旨在优化生成式AI模型的推理性能。它集成了多项先进技术,如动态形状支持、稀疏计算和高效内存管理等,特别适合处理LLMs这类大规模、复杂的模型。

    主要特点

    1. 专为LLMs优化:针对Transformer架构和生成式任务进行了特殊优化。
    2. 动态形状支持:能够处理变长输入序列,无需固定批处理大小。
    3. 高效内存管理:通过智能缓存和内存复用技术,显著减少内存占用。
    4. 稀疏计算加速:利用模型的稀疏性,提高计算效率。
    5. 多硬件支持:可在CPU、GPU等多种硬件平台上运行,充分利用硬件特性。

    安装和设置

    要开始使用OpenVINO GenAI Flavor,首先需要安装必要的软件包。您可以通过pip命令轻松完成安装:

    pip install openvino openvino-genai

    这将安装最新的OpenVINO开发版本以及GenAI Flavor专用组件。

    模型准备

    在使用OpenVINO GenAI Flavor之前,需要将LLM转换为OpenVINO的中间表示(IR)格式。这一步骤可以通过OpenVINO的模型转换工具完成。以下是转换过程的基本步骤:

    1. 导出原始模型:从训练框架(如PyTorch或TensorFlow)导出模型。
    2. 转换为ONNX:将模型转换为ONNX格式,这是一个通用的深度学习模型表示格式。
    3. ONNX到IR转换:使用OpenVINO的Model Optimizer工具将ONNX模型转换为IR格式。

    示例代码:

    from openvino.runtime import Core
    from transformers import AutoTokenizer, AutoModelForCausalLM
    
    # 加载预训练模型和分词器
    model_name = "gpt2"
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = AutoModelForCausalLM.from_pretrained(model_name)
    
    # 转换为ONNX格式
    onnx_model_path = "gpt2.onnx"
    dummy_input = tokenizer("Hello, how are you?", return_tensors="pt").input_ids
    torch.onnx.export(model, dummy_input, onnx_model_path, opset_version=11)
    
    # 使用OpenVINO转换为IR格式
    core = Core()
    ov_model = core.read_model(onnx_model_path)
    compiled_model = core.compile_model(ov_model, "CPU")

    使用OpenVINO GenAI Flavor进行推理

    一旦模型转换完成,就可以使用OpenVINO GenAI Flavor进行高效推理。以下是一个基本的推理流程示例:

    import numpy as np
    from openvino.runtime import Core, Tensor
    from transformers import AutoTokenizer
    
    # 初始化OpenVINO Core和模型
    core = Core()
    model = core.read_model("path/to/your/model.xml")
    compiled_model = core.compile_model(model, "CPU")
    
    # 准备输入数据
    tokenizer = AutoTokenizer.from_pretrained("gpt2")
    input_text = "OpenVINO is"
    input_ids = tokenizer.encode(input_text, return_tensors="np")
    
    # 创建推理请求
    infer_request = compiled_model.create_infer_request()
    
    # 设置输入并执行推理
    infer_request.set_input_tensor(Tensor(input_ids))
    infer_request.infer()
    
    # 获取输出
    output = infer_request.get_output_tensor().data
    
    # 解码输出
    generated_text = tokenizer.decode(output[0], skip_special_tokens=True)
    print(generated_text)

    这个示例展示了如何使用OpenVINO GenAI Flavor加载模型、处理输入、执行推理并获取输出。

    高级功能和优化技巧

    OpenVINO GenAI Flavor提供了多种高级功能和优化技巧,可以进一步提升LLMs的推理性能:

    1. 动态形状处理

    GenAI Flavor支持动态输入形状,这对于处理变长序列非常有用:

    # 设置动态形状
    model.reshape({0: [-1, -1]})  # 第一维为批次大小,第二维为序列长度

    2. KV缓存优化

    对于自回归生成任务,GenAI Flavor实现了高效的KV缓存机制:

    # 启用KV缓存
    compiled_model = core.compile_model(model, "CPU", config={"PERFORMANCE_HINT": "LATENCY"})

    3. 稀疏计算加速

    GenAI Flavor可以自动检测和利用模型中的稀疏性,无需额外配置即可获得加速:

    # 稀疏计算会自动应用,无需特殊设置

    4. 批处理推理

    对于需要处理多个输入的场景,可以使用批处理来提高吞吐量:

    # 准备批处理输入
    batch_inputs = tokenizer(["Hello", "How are you", "OpenVINO is great"],
                             padding=True, return_tensors="np")
    
    # 执行批处理推理
    results = compiled_model(batch_inputs.input_ids)

    5. 异步推理

    利用异步推理可以更好地利用硬件资源,提高整体效率:

    # 创建异步推理请求
    infer_request = compiled_model.create_infer_request()
    
    # 启动异步推理
    infer_request.start_async()
    
    # 等待结果
    infer_request.wait()
    
    # 获取结果
    output = infer_request.get_output_tensor().data

    性能优化和调优

    为了获得最佳性能,可以考虑以下优化策略:

    1. 选择合适的硬件:根据模型大小和推理需求,选择CPU、GPU或专用AI加速器。
    2. 量化:对模型进行INT8量化可以显著减少内存占用和推理时间。
    3. 模型剪枝:移除不必要的模型参数,减小模型大小。
    4. 缓存优化:合理设置缓存大小,平衡内存使用和性能。
    5. 并行推理:在多核系统上,利用多线程并行处理多个推理请求。

    示例代码:

    # 使用INT8量化
    quantized_model = core.quantize_model(model, "CPU", {"STAT_TYPE": "DYNAMIC"})
    
    # 设置线程数
    core.set_property("CPU", {"INFERENCE_NUM_THREADS": 4})
    
    # 启用缓存
    compiled_model = core.compile_model(quantized_model, "CPU",
                                        config={"CACHE_DIR": "./model_cache"})

    最佳实践和注意事项

    1. 内存管理:对于大型LLMs,合理管理内存至关重要。使用流式处理或分段处理来减少内存占用。
    2. 输入预处理:确保输入数据格式正确,并考虑将预处理步骤集成到模型中以提高效率。
    3. 错误处理:实现健壮的错误处理机制,以应对可能的推理失败或异常情况。
    4. 模型更新:定期更新模型和OpenVINO版本,以获得最新的性能优化和功能支持。
    5. 性能监控:使用OpenVINO提供的性能分析工具来识别瓶颈并进行针对性优化。

    结论

    OpenVINO GenAI Flavor为运行大语言模型提供了强大而灵活的解决方案。通过利用其专门的优化技术和高级功能,开发者可以显著提升LLMs的推理性能,使这些复杂的模型能够在各种硬件平台上高效运行。随着生成式AI技术的不断发展,OpenVINO GenAI Flavor将继续演进,为开发者提供更多工具和能力,以应对未来的挑战和机遇。

    参考文献

    1. Intel Corporation. (2024). Run LLMs with OpenVINO GenAI Flavor — OpenVINO™ documentation. https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide/genai-guide.html
人生梦想 - 关注前沿的计算机技术 acejoy.com 🐾 步子哥の博客 🐾 背多分论坛 🐾 知差(chai)网
快取状态: No
内存使用量: 9.1437 MB
资料库查询次数: 2
页面产生时间: 0.323 (秒)