闪存式大模型:用非结构化稀疏性实现高效低成本的大型生成模型推理
随着模型参数规模的快速增长,部署大型生成模型变得越来越具有挑战性,因为它们通常需要大量的GPU内存和计算资源。 … 阅读更多
随着模型参数规模的快速增长,部署大型生成模型变得越来越具有挑战性,因为它们通常需要大量的GPU内存和计算资源。 … 阅读更多
大型语言模型(LLM)已经成为自然语言处理领域的宠儿,它们在各种任务中展现出卓越的性能。然而,巨大的计算量和内 … 阅读更多
大型语言模型(LLM)究竟能学到什么?这个问题看似简单,却暗藏玄机。从本质上来说,语言模型是定义在字符串上的概 … 阅读更多
引言 大型语言模型究竟能学到什么?这是一个不断被研究的问题。语言模型(LM)本质上是分布在字符串上的概率分布。 … 阅读更多
大型语言模型(LLM)在自然语言处理领域取得了巨大成功,但其高昂的计算成本和庞大的内存需求也成为了限制其应用的 … 阅读更多
作为一名资深的coder,我经常需要使用各种各样的编程语言和工具来完成工作。其中,Groovy 语言凭借其简洁 … 阅读更多
在信息爆炸的时代,如何从海量信息中找到我们真正需要的内容,成为了一个重要问题。JStarCraft RNS 应 … 阅读更多
在过去十年中,推荐系统的研究和应用变得越来越重要。这些系统可以帮助用户找到他们可能感兴趣的项目,从而提高公司的 … 阅读更多
近年来,变形金刚(Transformers)凭借其强大的能力,在自然语言处理领域取得了巨大成功,成为深度学习的 … 阅读更多
循环神经网络(RNN)长期以来一直是建模时序数据的经典架构,但它们在训练长序列时却臭名昭著地难以训练。这是因为 … 阅读更多