借一步网
作者:
在
在人工智能快速发展的今天,大语言模型(LLMs)已经成为人们获取信息的重要工具。然而,这些模型存在的”幻觉”问题一直是研究者们关注的焦点。最新发表在arXiv上的一项研究为解决这一难题提供了新的思路 – 通过精细化的归因来提高模型回答的可信度和可验证性。
尽管大语言模型在信息检索任务上表现出色,但它们仍然难以避免”幻觉”问题的困扰。所谓”幻觉”,是指模型生成不存在的事实或不忠实于原文的内容。这一问题不仅影响了模型回答的准确性,更有可能导致错误信息的传播,直接影响大语言模型的可靠性和可信度。
为了缓解这一问题,研究人员提出了带有归因功能的大语言模型。这类模型能够在生成文本的同时提供内联引用,以增强模型输出的事实性和可验证性。然而,现有的归因方法仍存在明显的局限性:
为了解决上述问题,来自哈尔滨工业大学和华为公司的研究团队提出了一种名为FRONT的新型训练框架。该框架旨在教导大语言模型生成精细化的有根据的引用(Fine-gRained grOuNded ciTations)。
FRONT框架的核心思想是:首先从检索到的源文档中选择支持性引用,然后基于这些引用来指导生成过程,从而确保生成的回答有据可依,引用准确无误。这种方法不仅提高了引用质量,还为用户提供了更便捷的细粒度验证途径。
FRONT框架的一大创新在于其自动化的高质量归因数据生成管道。这一管道包括三个主要步骤:
FRONT框架采用了创新的两阶段训练方法,旨在赋予大语言模型精细化归因能力:
研究团队在ALCE基准测试上进行了广泛的实验,以评估FRONT框架的效果。ALCE基准包括三个长文本问答数据集,涵盖了各种类型的问题。实验结果令人振奮:
FRONT框架的提出为解决大语言模型的”幻觉”问题提供了一种新的思路。通过精细化的归因方法,不仅提高了模型回答的可信度,还为用户提供了更便捷的验证途径。这项研究对于提升人工智能系统的可靠性和透明度具有重要意义。
未来,研究者们可能会进一步探索:
随着这些研究的深入,我们有理由相信,未来的大语言模型将能够提供更加可靠、透明和可验证的信息服务,为用户带来更好的体验。
参考文献:[1] Huang, L. , Feng, X., Ma, W., Gu, Y., Zhong, W., Feng, X., … & Qin, B. (2023). Learning Fine-Grained Grounded Citations for Attributed Large Language Models. arXiv preprint arXiv:2408.04568.✅
要发表评论,您必须先登录。
在人工智能快速发展的今天,大语言模型(LLMs)已经成为人们获取信息的重要工具。然而,这些模型存在的”幻觉”问题一直是研究者们关注的焦点。最新发表在arXiv上的一项研究为解决这一难题提供了新的思路 – 通过精细化的归因来提高模型回答的可信度和可验证性。
大语言模型的”幻觉”困境
尽管大语言模型在信息检索任务上表现出色,但它们仍然难以避免”幻觉”问题的困扰。所谓”幻觉”,是指模型生成不存在的事实或不忠实于原文的内容。这一问题不仅影响了模型回答的准确性,更有可能导致错误信息的传播,直接影响大语言模型的可靠性和可信度。
为了缓解这一问题,研究人员提出了带有归因功能的大语言模型。这类模型能够在生成文本的同时提供内联引用,以增强模型输出的事实性和可验证性。然而,现有的归因方法仍存在明显的局限性:
FRONT:精细化归因的新框架
为了解决上述问题,来自哈尔滨工业大学和华为公司的研究团队提出了一种名为FRONT的新型训练框架。该框架旨在教导大语言模型生成精细化的有根据的引用(Fine-gRained grOuNded ciTations)。
FRONT框架的核心思想是:首先从检索到的源文档中选择支持性引用,然后基于这些引用来指导生成过程,从而确保生成的回答有据可依,引用准确无误。这种方法不仅提高了引用质量,还为用户提供了更便捷的细粒度验证途径。
自动化数据生成管道
FRONT框架的一大创新在于其自动化的高质量归因数据生成管道。这一管道包括三个主要步骤:
两阶段训练方法
FRONT框架采用了创新的两阶段训练方法,旨在赋予大语言模型精细化归因能力:
a. 直接从源文档提取引用,减少了不相关信息的引入和”幻觉”风险。
b. 每个文档标识符作为明确的监督信号,有助于提高引用质量。
实验结果与分析
研究团队在ALCE基准测试上进行了广泛的实验,以评估FRONT框架的效果。ALCE基准包括三个长文本问答数据集,涵盖了各种类型的问题。实验结果令人振奮:
研究意义与展望
FRONT框架的提出为解决大语言模型的”幻觉”问题提供了一种新的思路。通过精细化的归因方法,不仅提高了模型回答的可信度,还为用户提供了更便捷的验证途径。这项研究对于提升人工智能系统的可靠性和透明度具有重要意义。
未来,研究者们可能会进一步探索:
随着这些研究的深入,我们有理由相信,未来的大语言模型将能够提供更加可靠、透明和可验证的信息服务,为用户带来更好的体验。
参考文献:
[1] Huang, L. , Feng, X., Ma, W., Gu, Y., Zhong, W., Feng, X., … & Qin, B. (2023). Learning Fine-Grained Grounded Citations for Attributed Large Language Models. arXiv preprint arXiv:2408.04568.✅