借一步网
作者:
在
近年来,大型语言模型(LLM)在各个领域都取得了显著进展,但其高昂的计算资源消耗和内存占用成为了制约其应用的关键瓶颈。PagedAttention 作为一种动态内存分配机制,在一定程度上解决了 LLM 的内存问题,但也存在一些缺陷,例如内存不连续导致的效率低下和开发难度增加。
本文将介绍一种全新的内存管理技术——vAttention,它可以看作是 PagedAttention 的升级版本,有效地解决了这些问题,并显著提升了 LLM 的性能。
PagedAttention 通过动态分配内存来应对 LLM 自回归生成时内存需求不确定的问题。然而,这种方法存在以下几个不足:
vAttention 巧妙地利用了虚拟内存机制,将预分配虚拟内存和实际分配物理内存分离,并拓展了分配小内存的 PyTorch 算子,将内存管理从注意力内核中剥离出来。
vAttention 的核心思想:
vAttention 的优势:
实验结果表明,vAttention 在吞吐量和推理时间方面都取得了显著提升,性能比 vLLM 高出 1.97 倍。
vAttention 作为 PagedAttention 的升级版本,有效地解决了传统内存管理机制的缺陷,为 LLM 的应用提供了更强大的支持。它不仅提高了 LLM 的性能,也简化了开发流程,为 LLM 的进一步发展提供了新的方向。
注: 本文内容主要参考了 akaihaoshuai 的知乎文章,并加入了个人理解和分析。
要发表评论,您必须先登录。
近年来,大型语言模型(LLM)在各个领域都取得了显著进展,但其高昂的计算资源消耗和内存占用成为了制约其应用的关键瓶颈。PagedAttention 作为一种动态内存分配机制,在一定程度上解决了 LLM 的内存问题,但也存在一些缺陷,例如内存不连续导致的效率低下和开发难度增加。
本文将介绍一种全新的内存管理技术——vAttention,它可以看作是 PagedAttention 的升级版本,有效地解决了这些问题,并显著提升了 LLM 的性能。
PagedAttention 的局限性
PagedAttention 通过动态分配内存来应对 LLM 自回归生成时内存需求不确定的问题。然而,这种方法存在以下几个不足:
vAttention:突破传统内存管理的限制
vAttention 巧妙地利用了虚拟内存机制,将预分配虚拟内存和实际分配物理内存分离,并拓展了分配小内存的 PyTorch 算子,将内存管理从注意力内核中剥离出来。
vAttention 的核心思想:
vAttention 的优势:
性能评估
实验结果表明,vAttention 在吞吐量和推理时间方面都取得了显著提升,性能比 vLLM 高出 1.97 倍。
总结
vAttention 作为 PagedAttention 的升级版本,有效地解决了传统内存管理机制的缺陷,为 LLM 的应用提供了更强大的支持。它不仅提高了 LLM 的性能,也简化了开发流程,为 LLM 的进一步发展提供了新的方向。
注: 本文内容主要参考了 akaihaoshuai 的知乎文章,并加入了个人理解和分析。