Hilbert, M. , & Darmon, D. (2020). How Complexity and Uncertainty Grew with Algorithmic Trading. Entropy, 22(5), 499. https://doi.org/10.3390/e22050499✅
The New Investor, UCLA Law Review, available at: https://ssrn.com/abstract=2227498
The New Financial Industry, Alabama Law Review, available at: https://ssrn.com/abstract=2417988
Virtu Financial Form S-1, available at https://www.sec.gov/Archives/edgar/data/1592386/000104746914002070/a2218589zs-1.htm
近年来,算法交易在金融市场中迅速崛起,彻底改变了金融资产的交易方式。然而,算法交易带来的影响并非简单地提高了交易效率,而是带来了更复杂、更不可预测的市场动态。本文将带您深入探讨算法交易如何改变了金融市场的复杂性和不确定性。
算法交易的兴起:从自动化到智能化
算法交易是指使用预先编写的交易指令自动执行交易,这些指令会根据时间、价格、交易量等因素进行调整。算法交易利用了计算机的速度和计算能力,在交易速度和效率上远远超过了人工交易。
算法交易的发展可以追溯到 20 世纪 70 年代,当时纽约证券交易所推出了“指定订单周转系统”(DOT)。随着全电子交易市场的兴起,程序化交易也随之出现,它允许根据各种因素自动执行交易。20 世纪 80 年代,程序化交易在标普 500 股票和期货市场之间广泛使用,形成了指数套利策略。
21 世纪初,算法交易的复杂性和智能化程度大幅提升。2001 年,IBM 研究人员在国际人工智能联合会议上发表了一篇论文,证明了在金融市场中使用的电子拍卖的实验性实验室版本中,两种算法策略(IBM 自己的 MGD 和惠普的 ZIP)能够始终优于人工交易者。
2005 年,美国证券交易委员会(SEC)实施了“国家市场系统法规”,改变了交易方式,例如“交易通过规则”,该规则规定市场订单必须以最佳可获得价格发布和执行,从而防止经纪公司从匹配买卖订单的价格差异中获利。
随着更多电子交易市场的开放,其他算法交易策略也随之出现,例如:
算法交易带来的复杂性和不确定性
研究表明,算法交易虽然能够提高市场流动性,但也带来了新的复杂性和不确定性。
微观层面的确定性与宏观层面的不确定性
算法交易遵循预先设定的规则,在微观层面,算法的自动化行为使某些部分的交易动态更加可预测。然而,在宏观层面,整体的交易动态变得更加复杂和不可预测。
更细致的市场洞察与更大的不确定性
算法交易能够深入挖掘市场数据,发现人类交易者无法察觉的细微价格差异,从而在更细致的层面上进行交易。然而,这种更细致的市场洞察也带来了更大的不确定性,因为市场动态变得更加复杂,可能的交易结果也更加多样化。
信息理论:理解复杂性和不确定性的关系
信息理论为我们提供了一个框架,帮助我们理解算法交易带来的复杂性和不确定性的关系。
研究表明,算法交易会增加交易动态的预测复杂性和剩余不确定性。这似乎是一个矛盾,但信息理论解释了这种现象:算法交易创造了新的结构,但同时也增加了可能的交易结果,从而导致更大的不确定性。
算法交易的未来:更复杂,更不可预测?
算法交易的快速发展带来了新的挑战,例如:
算法交易的未来发展趋势是更加复杂和智能化。随着人工智能技术的不断发展,算法交易将变得更加强大,也更加难以理解和控制。这将给金融市场带来更大的挑战,也需要监管机构和市场参与者共同努力,确保算法交易的健康发展。
参考文献