借一步网
作者:
在
在最新的 DeepSeek-V2 语言模型中,多头潜在注意力机制 (Multi-head Latent Attention, MLA) 作为一种创新架构,被设计用来保证高效的推理过程。本文将详细介绍 MLA 的关键特性及其在 DeepSeek-V2 中的应用和优势。
MLA 通过将 Key-Value (KV) 缓存压缩到一个潜在向量中,显著减少了推理过程中所需的内存和计算资源。这种压缩大大降低了内存占用和计算需求,从而实现更快、更高效的处理 [1]。
在注意力机制中,KV 缓存是一个重要组件,负责存储输入序列中不同 token 之间的关系信息。MLA 将这个缓存压缩成一个潜在向量,显著减小其大小和内存占用 [1]。
MLA 是 DeepSeekMoE 架构的一部分,该架构通过稀疏计算实现经济高效的强大语言模型训练。这意味着每个 token 仅激活模型参数的一个子集,从而减少了训练过程中的整体计算需求 [1]。
与其前身 DeepSeek 67B 相比,采用 MLA 的 DeepSeek-V2 实现了显著更强的性能。尽管仅激活了 21B 的参数,DeepSeek-V2 及其聊天版本仍在开源模型中达到了顶级性能 [1]。
总的来说,MLA 是一种通过将 Key-Value 缓存压缩到潜在向量中来保证高效推理的创新架构。它显著减少了内存和计算需求,带来了更快、更高效的处理过程。采用 MLA 的 DeepSeek-V2 在降低训练成本和提高生成吞吐量的同时,仍实现了强大的性能 [1]。
了解更多:
要发表评论,您必须先登录。
在最新的 DeepSeek-V2 语言模型中,多头潜在注意力机制 (Multi-head Latent Attention, MLA) 作为一种创新架构,被设计用来保证高效的推理过程。本文将详细介绍 MLA 的关键特性及其在 DeepSeek-V2 中的应用和优势。
高效的推理过程
MLA 通过将 Key-Value (KV) 缓存压缩到一个潜在向量中,显著减少了推理过程中所需的内存和计算资源。这种压缩大大降低了内存占用和计算需求,从而实现更快、更高效的处理 [1]。
Key-Value (KV) 缓存压缩
在注意力机制中,KV 缓存是一个重要组件,负责存储输入序列中不同 token 之间的关系信息。MLA 将这个缓存压缩成一个潜在向量,显著减小其大小和内存占用 [1]。
稀疏计算
MLA 是 DeepSeekMoE 架构的一部分,该架构通过稀疏计算实现经济高效的强大语言模型训练。这意味着每个 token 仅激活模型参数的一个子集,从而减少了训练过程中的整体计算需求 [1]。
提升的性能
与其前身 DeepSeek 67B 相比,采用 MLA 的 DeepSeek-V2 实现了显著更强的性能。尽管仅激活了 21B 的参数,DeepSeek-V2 及其聊天版本仍在开源模型中达到了顶级性能 [1]。
结论
总的来说,MLA 是一种通过将 Key-Value 缓存压缩到潜在向量中来保证高效推理的创新架构。它显著减少了内存和计算需求,带来了更快、更高效的处理过程。采用 MLA 的 DeepSeek-V2 在降低训练成本和提高生成吞吐量的同时,仍实现了强大的性能 [1]。
了解更多: