知识点: Meta-Reasoner的基本概念与目标 题目: Meta-Reasoner框架的主要目标是什么? 选项: A. 完全替代传统的Chain-of-Thought推理✅ B. 动态优化推理时间并减少计算资源浪费✅ C. 增加模型参数量以提高推理能力✅ D. 仅用于数学问题求解✅
正确答案: B
原文依据: 「To address these issues, we introduce Meta-Reasoner, a framework that dynamically optimizes inference-time reasoning by enabling LLMs to “think about how to think.”」(出自:引言部分,第1页)
知识点: Meta-Reasoner的工作原理 题目: Meta-Reasoner框架中,元推理器(meta-reasoner)的主要角色是什么? 选项: A. 直接生成最终答案✅ B. 作为战略顾问,提供高层次指导✅ C. 替代LLM进行推理✅ D. 仅负责错误检测✅
正确答案: B
原文依据: 「The meta-reasoner serves as an “advisor”, dynamically evaluates the reasoning process, offering high-level guidance and strategic redirection when progress stalls.」(出自:引言部分,第1页)
知识点: Meta-Reasoner与传统CoT的区别 题目: 与传统的Chain-of-Thought(CoT)相比,Meta-Reasoner的主要优势是什么? 选项: A. 完全消除了推理错误✅ B. 减少了模型训练时间✅ C. 避免在无效推理路径上浪费计算资源✅ D. 不需要使用大型语言模型✅
正确答案: C
原文依据: 「By decoupling global strategy decisions from low-level chain-of-thought generation, Meta-Reasoner oversees progress through concise “progress reports” rather than micromanaging each reasoning step. This design mitigates error propagation and reduces wasted computation on unproductive paths.」(出自:引言部分,第1页)
知识点: Meta-Reasoner的工作流程 题目: Meta-Reasoner框架的工作流程中,每轮迭代包含哪几个主要步骤? 选项: A. 生成CoT、进度报告、策略生成✅ B. 错误检测、回溯、重新开始✅ C. 问题分解、解决子问题、合并结果✅ D. 多路径探索、投票选择、最终答案✅
正确答案: A
原文依据: 「At each round t, the reasoning process comprises three steps: (1) CoT generation by the LLM, (2) Progress Reporting to summarize the reasoning progress so far, and (3) Strategy Generation by the meta-reasoner to optimize subsequent steps.」(出自:方法部分,第4页)
知识点: 进度报告(Progress Reporting)的作用 题目: 在Meta-Reasoner框架中,进度报告(Progress Reporting)的主要作用是什么? 选项: A. 直接提供最终答案✅ B. 帮助元推理器专注于高层次策略而非细节✅ C. 替代CoT生成步骤✅ D. 增加模型参数量✅
正确答案: B
原文依据: 「This summary captures the key aspects of the reasoning trajectory, such as how much progress has been made toward the task goal, the consistency of the reasoning, and any significant updates so far. The summarization function f abstracts the detailed CoT into a simpler, more focused representation. This step is designed to be both computationally efficient and informative, ensuring that the meta-reasoner can focus on evaluating high-level progress without being overwhelmed by the granular details of every reasoning step.」(出自:方法部分,第4页)
知识点: 元推理器策略生成(Meta-reasoner Strategy Generation) 题目: Meta-Reasoner框架中,元推理器如何选择适当的策略? 选项: A. 随机选择✅ B. 使用上下文多臂赌博机(contextual multi-armed bandit)算法✅ C. 始终选择最保守的策略✅ D. 由人类专家手动选择✅
正确答案: B
原文依据: 「We formulate the generation of strategy as a multi-armed bandits problem and consider two settings below: (1) our approach begins with a fixed-strategy formulation, where the meta-reasoner selects from a predefined set of strategies using a contextual bandit algorithm.」(出自:方法部分,第4页)
知识点: 固定上下文赌博机(Fixed Contextual Bandit) 题目: 在Meta-Reasoner的固定上下文赌博机(Fixed Contextual Bandit)设置中,以下哪项描述是正确的? 选项: A. 元推理器可以动态创建新策略✅ B. 元推理器从固定有限的策略集中选择✅ C. 不需要计算奖励值✅ D. 不使用进度报告✅
正确答案: B
原文依据: 「In the basic version of our framework, the meta-reasoner is modeled as a single contextual bandit that selects from a fixed, finite set of K strategies.」(出自:方法部分,第4页)
知识点: 动态上下文赌博机(Dynamic Contextual Bandit) 题目: Meta-Reasoner的动态上下文赌博机(Dynamic Contextual Bandit)与固定版本相比的主要区别是什么? 选项: A. 不需要使用LLM✅ B. 不计算奖励值✅ C. 允许元推理器提出或改进新策略✅ D. 只适用于数学问题✅
正确答案: C
原文依据: 「The basic framework assumes a static set of arms (strategies). In practice, the meta-reasoner may also be an LLM, capable of inventing new approaches over time. To accommodate dynamic strategies, we allow the meta-reasoner to propose or refine new strategies at round t, which generates an expanding collection of actions, A₁ ⊆ ··· ⊆ Aₜ.」(出自:方法部分,第4页)
知识点: Meta-Reasoner的实验设置 题目: 研究者在哪些数据集上评估了Meta-Reasoner的性能? 选项: A. 仅在数学问题上✅ B. 仅在科学问题上✅ C. 24点游戏、SciBench和TheoremQA✅ D. 仅在逻辑推理问题上✅
正确答案: C
原文依据: 「We evaluate Meta-Reasoner on several challenging datasets: the 24-point game proposed by Yao et al. (2023), college-level scientific problem from SciBench Wang et al. (2024) and theorem-driven math question in TheoremQA Chen et al. (2023).」(出自:实验部分,第5页)
知识点: Meta-Reasoner的实验结果 题目: 在24点游戏上,Meta-Reasoner与GPT-4o-mini相比,准确率提高了多少? 选项: A. 没有提高✅ B. 提高了约5%✅ C. 提高了约40%✅ D. 提高了约85%✅
正确答案: D
原文依据: 「In Table 3, we show that when removing progress reporting (“w/o Progress Report”), the overall performance moderately degrades and we hypothesize it is due to the concise intermediate summarizations can help the Meta-reasoner only consider the high-level strategy instead of being confused with too much details of the reasoning process. We also find that removing the MAB brings a more pronounced effect, especially when strategy selection falls back to a direct chain-of-thought approach (“w/o MAB (CoT)”).」(出自:实验部分,第5页)
知识点: Meta-Reasoner的消融研究 题目: 根据消融研究,移除Meta-Reasoner中的哪个组件对性能影响最大? 选项: A. 进度报告✅ B. 多臂赌博机(MAB)✅ C. 动态策略生成✅ D. 固定策略集✅
正确答案: B
原文依据: 「We also find that removing the MAB brings a more pronounced effect, especially when strategy selection falls back to a direct chain-of-thought approach (“w/o MAB (CoT)”).」(出自:实验部分,第5页)
知识点: 固定与动态赌博机变体的比较 题目: 在24点游戏上,动态赌博机变体相比固定赌博机变体(K=5)的准确率提高了多少? 选项: A. 没有提高✅ B. 提高了约5%✅ C. 提高了约17%✅ D. 提高了约30%✅
正确答案: C
原文依据: 「In Table 6, we compare fixed and dynamic bandit variants on the game of 24 and theoremQA. We find that using a fixed set of strategies (e.g., K=3 and K=5) yields lower performance compared to the dynamic approach which adaptively explores more strategies (shown by larger unique strategies).」(出自:实验部分,第5页)
知识点: Meta-Reasoner的推理效率 题目: 关于Meta-Reasoner的推理效率,以下哪项描述是正确的? 选项: A. 它的推理成本最高但准确率最低✅ B. 它的推理成本最低但准确率也最低✅ C. 它在高准确率和适中推理成本之间取得了良好平衡✅ D. 它的准确率和推理成本都是最高的✅
正确答案: C
原文依据: 「Our proposed method stands out by achieving a strong balance between high accuracy and moderate inference cost, outperforming methods like MACM, which delivers lower accuracy at higher costs.」(出自:实验部分,第5页)
知识点: Meta-Reasoner的灵感来源 题目: Meta-Reasoner框架的设计灵感来源于什么? 选项: A. 仅来自于计算机科学中的算法✅ B. 人类元认知和双重处理理论✅ C. 仅来自于数学推理方法✅ D. 仅基于神经网络架构✅
正确答案: B
原文依据: 「Drawing inspiration from human meta-cognition and dual-process theory, Meta-Reasoner operates as a strategic advisor, decoupling high-level guidance from step-by-step generation.」(出自:摘要部分,第1页)
知识点: Meta-Reasoner与双重处理系统的类比 题目: 在双重处理系统的类比中,Meta-Reasoner框架中的LLM和元推理器分别对应什么? 选项: A. LLM对应系统2,元推理器对应系统1✅ B. LLM对应系统1,元推理器对应系统2✅ C. 两者都对应系统1✅ D. 两者都对应系统2✅
正确答案: B
原文依据: 「Drawing on these insights, our Meta-Reasoner can be considered analogous to dual-process systems, where LRM for generating CoT steps parallels System 1 and Meta-Reasoner for providing high-level strategic oversight to guide or redirect reasoning when needed serves as System 2.」(出自:相关工作部分,第2页)
知识点: LinUCB算法在Meta-Reasoner中的应用 题目: Meta-Reasoner中使用的LinUCB算法如何平衡探索与利用? 选项: A. 仅通过随机选择策略✅ B. 仅选择历史上表现最好的策略✅ C. 通过置信上界项鼓励选择不确定性更高的策略✅ D. 完全忽略历史数据✅
正确答案: C
原文依据: 「Here, the term c√(xt^T As^-1 xt) serves as a confidence bound on the reward estimate, encouraging the selection of arms with higher uncertainty (i.e., those with less historical data) and thereby facilitating exploration.」(出自:预备知识部分,第3页)
知识点: Meta-Reasoner的策略类型 题目: 以下哪项不是Meta-Reasoner框架中使用的策略类型? 选项: A. 从头重新开始并提出替代策略✅ B. 回溯到错误发生的地方✅ C. 继续并为下一步提供具体建议✅ D. 增加模型参数量✅
正确答案: D
原文依据: 「These strategies may include instructions such as “continue and provide specific suggestions”, “restart from scratch”, “backtrack to the point where the error occurred”, or “propose alternative methods or perspectives to consider”.」(出自:方法部分,第4页)
知识点: Meta-Reasoner的局限性 题目: 根据论文,Meta-Reasoner框架的一个主要局限性是什么? 选项: A. 只能用于数学问题✅ B. 需要大量人工标注数据✅ C. 依赖于精心设计的奖励函数✅ D. 无法与现有LLM集成✅
正确答案: C
原文依据: 「First, it relies on a carefully designed reward function to guide strategy selection: if the reward signal does not accurately reflect correctness or progress, the meta-reasoner may persist with incorrect strategies.」(出自:局限性部分,第6页)
知识点: Meta-Reasoner的贡献总结 题目: 以下哪项不是论文中提到的Meta-Reasoner的主要贡献? 选项: A. 提出了一个新的元推理框架,使LLM能够”思考如何思考”✅ B. 通过将全局策略决策与低级CoT生成分离,减少了错误传播✅ C. 在具有挑战性的数学和科学推理基准上展示了显著的改进✅ D. 完全消除了LLM推理中的所有错误✅
正确答案: D
原文依据: 「We propose a novel meta-reasoning framework that operates as a high-level advisor for LLMs, enabling them to “think about how to think” by dynamically optimizing inference-time reasoning strategies. By decoupling global strategy decisions from low-level chain-of-thought generation, Meta-Reasoner oversees progress through concise “progress reports” rather than micromanaging each reasoning step. This design mitigates error propagation and reduces wasted computation on unproductive paths. We evaluate Meta-Reasoner on challenging mathematical and scientific reasoning benchmarks (e.g., Game of 24, TheoremQA, and SciBench), demonstrating significant improvements in both accuracy and efficiency compared to baselines.」(出自:引言部分,第1页)
学习目标
通过精心设计的选择题和原文对照,帮助学习者掌握Meta-Reasoner框架的核心知识点
使用说明
请仔细阅读每个问题,对照原文理解解析
题目与解析