从共生到非随机突变:进化的多元视角

1. 共生:进化的新维度

在生命的漫长历程中,共生(Symbiosis)为生物提供了独特的小生境,释放了进化空间的又一个维度。地衣系统就是一个典型的例子,它由真菌和藻类或蓝细菌共同组成,形成了一个全新的生态系统。通过这种共生关系,生命不仅能够适应更加多样的环境,还能创造出原本不可能出现的生物形式。正如林恩·玛格丽丝(Lynn Margulis)所言,共生将散布在生命谱系中的各种经验和所得重新结合起来,使生命之树在不断散叶的同时,又能将分叉的枝条重新拢到一起。

这种融合了共生的进化过程,更像是一丛灌木而非一棵树——生命之丛。如果这幅图景大致无误的话,也许我们就应该重新思考自己的过去和未来了。共生不仅仅是一种合作方式,它还为进化提供了一种加速机制。在恰当的时机稍稍进行一下共生协调,就能取代漫长的细微变化。处于交互关系中的进化过程可以跃过个体的上百万年反复试错的时间。换句话说,没有共生,进化过程也可以直接获得有核细胞,但是要完成这个目标可能要再花上十亿年或者五十亿年的时间

1.1 共生的多样性

共生不仅仅是两个物种之间的简单合作,它还带来了新的竞争无法提供的多样性。例如,地衣系统中,真菌为藻类提供了保护和水分,而藻类则为真菌提供了光合作用产生的养分。这种互利关系使得地衣能够在极端环境中生存,如极地、沙漠和高海拔地区。共生的多样性不仅体现在物种之间的合作上,还体现在它们如何共同应对环境变化。通过这种方式,共生为进化提供了更多的可能性,推动了生命的多样性和复杂性。

1.2 共生与进化的关系

共生不仅仅是进化的副产品,它本身就是进化的重要驱动力。通过对生物形式库进行扩充,共生释放出了进化空间的另一个维度。例如,线粒体和叶绿体的起源被认为是早期生命形式通过共生关系获得的。这些细胞器的出现极大地提高了细胞的能量效率,从而为复杂多细胞生物的进化奠定了基础。因此,共生不仅是进化的结果,也是进化的推动力。


2. 非随机突变:进化的内在逻辑

2.1 自然选择与变异的二重奏

自然选择是自然界冷酷的死神。达尔文大胆宣称:在进化的真正核心,许多被批量删除的无足轻重的部分——许多微不足道的任意死亡——仅从轻微的变化中获得一时的欢乐,却能以违反直觉的方式,累积成真正新颖而有价值的产物。在传统选择理论的戏剧性事件中,死神出演了主角。它一心一意地削减着生命。它是一位编辑,但只会一个字:“不”。变异则轻易地通过衍生大量新生命来与死神这首单音符的葬曲相抗衡。变异也只会一个词:“可能”。

变异制造出大量一次性的“可能”,死神则马上大量地摧毁这些“可能”。大部分平庸之才一现世,即被肆意妄为的死神打发回去。有时候,这种理论也会这样描述:二重奏蹦出一个音“可以!”——于是海星留下了,肾脏细胞分裂出来了,莫扎特活下来了。从表面上看,由自然选择推动的进化仍然是个令人惊叹的假说。然而,死亡清除了那些无能者,为新生者腾出了位置。但如果说是死亡导致翅膀的形成、眼球的运作,那就犯了根本性的错误。自然选择只不过选掉了那些畸形的翅膀或者那些瞎了的眼睛。

2.2 内在选择与非随机突变

关于进化过程中革新性成果最初起源的问题,自达尔文以来的进化理论交出的都是颇为黯淡的记录。正如达尔文著作的标题明确显示的那样,他希望解决的问题,是物种起源的大谜题,而不是个体起源的问题。他问:新的生命种类从何而来?但没有问:个体之间的变异从何而来?

遗传学一开始就是与众不同的独立科学领域,它确实关注过变异与创新的起源。早期的遗传学家,比如孟德尔、威廉·贝特森(格雷戈里·贝特森的父亲,正是他创造了“genetics”——遗传学——这个词),为了解释差异何以在个体中产生以及变异如何传递给后代而孜孜以求。高尔顿爵士证明,从统计学的角度——在生物工程学出现之前,统计学是遗传学的一个主流研究方法——可以认为种群内部变异的遗传出自某一随机的源头。

后来,科学家们在由四个符号编码而成的长链分子〔DNA〕里发现了遗传机制,这条长链的某个随机点上符号的随机翻转,很容易被想象为变异的一个原因,也很容易建立数学模型。这些分子的随机变动一般归因于宇宙射线或者某种热力学的扰动。从新的视角来看,曾经意味着严重畸形的怪模怪样的突变,只不过是一次偏离了平均变异的翻转而已。就在前不久,有机体身上所发生的所有性状变化——从雀斑到颚裂——都被看成是统计意义上的程度不一的变异误差。于是,变异就变成了突变,而“突变”又随机组合成不可分割的“随机突变”。

然而,我们确知的是:显然,变异不是由于随机突变而产生——至少不总是如此;在变异中其实存在着某种程度的秩序。这是一个古老的观念。早在1926年,斯马茨〔3〕就为这种遗传学上的半秩序起了个名字:内在选择

2.3 内在选择的工作机制

关于这种“内在选择”,一个比较可信的描述是:允许宇宙射线在DNA编码中产生随机的错误,然后,某种已知的自我修复装置以一种区别对待(但是未知)的方式在细胞中纠正这些错误——纠正某些错误,同时放过另外一些错误。修正错误需要耗费大量的能量,所以,需要在纠正错误所需的能量消耗和变异可能带来的好处之间做一个衡量。如果错误发生在可能合时宜的地方,纠错机制就会让它留下,而如果它发生在会惹麻烦的地方,就会被纠正过来。

举一个假设的例子:克雷布斯循环〔4〕是你体内每一个细胞的基本能量工厂。它运转良好已达数亿年的时间。所以,如果乱动它,就会得不偿失。这时,如果身体侦测到克雷布斯循环的编码有一处发生了变异,它就会迅速将其排除掉。另一方面,身体的大小或者身体各部分的比例,也许值得好好调整;那么,不妨放手让变异在这方面折腾。如果内在选择就是这么工作的话,那么,有区别的变异就意味着,某些随机变异要比另外一些随机变异“更受优待”。

不仅如此,这种调整的一个迷人结果是,调节装置本身的突变所能造成的大规模影响,将会远远超过发生在其监管的DNA分子链上的突变。稍后我还会再谈到这一点。

2.4 定向突变:进化的主动选择

基因与基因之间存在着十分广泛的相互作用和相互调节的关系,因此,基因组形成了抗拒变化的复杂整体。因为基因大都是相互依赖的,其关系如此紧密——几乎交错锁合在一起,以至于变异不成其为一种选择,因而只在少数特定的领域中,才可能出现变异。正如进化论学者恩斯特·迈尔所说:“自由变异只在基因型的有限部分才能见到。”而这种遗传的整体性力量,从人类驯养动物的过程中可见一斑。饲养员通常会遇到这样的困窘:在挑选某一特定性状的过程中,会同时激活某些未知的基因,从而带来不太如意的副作用。不过,当放松了那些针对这一性状的环境压力之后,生物体的后继世代能够迅速地回复原本的特质,基因组仿佛是弹回到了原点。真正基因中的变异,与我们所想象的相去甚远。这种迹象表明,变异不仅是非随机的、范围有限的,而且根本就是很难获得的。

人们得到这样的印象:有一个高度灵活的基因官僚机构管理着其他基因的生活。最令人惊讶的是,所有生命,从果蝇到鲸鱼,都授权同一个基因管理局实行管理。比如说,在每一种脊椎动物体内,都能发现几乎完全相同的同源异形盒〔5〕自控序列(这是一段主开关基因,可以打开大段的其他基因)。

这种非随机变异的逻辑现在非常流行,当我发现居然找不到任何还持随机突变观点的主流学者时,一开始还真是大吃一惊。他们近乎一致地承认突变“并非真正随机”。这对他们来说,就意味着,(就我的感觉而言,)个体的突变也许并不那么随机——只属于近似随机或看似随机。不过,他们仍然相信,从统计意义上来说,如果时间拉得足够长的话,那么大量的突变会表现出一种随机的样子。林恩·玛格丽丝讽刺道:“哦,所谓随机,只不过是为无知找的一个借口而已。”

现如今,这种弱化的非随机突变看法已经引不起什么争论了,而另一种加强版才是富于刺激性的异端观点。这种观点认为,变异可以通过某种有意的、精心准备的方式来选择。与其说基因管理局仅仅对随机变异进行编辑,不如说它按一些计划表自己产生出变异。基因组为特定目的会创造出突变。定向突变可以刺激自然选择的盲目进程,把后者带出泥潭,将其推向越来越复杂的状态。在某种意义上,有机体会自编自导出突变以响应环境因素。

多少有点讽刺的是,这种定向突变的强势看法在实验室里获得的证据,比弱化的非随机看法更多更过硬。根据新达尔文主义的定律,环境,而且只有环境,能够对突变进行选择;而且,环境永远不能诱发或者指引突变。1988年,哈佛的遗传学家约翰·凯恩斯和他的同事们发表了大肠杆菌受环境影响诱发突变的证据。他们的断言颇为大胆:在某些特定的条件下,这种细菌会自发产生所需的突变来直接响应环境压力。不仅如此,凯恩斯居然敢这样结束他的论文:不管是什么导致了这种定向突变,“实际上,都提供了一种获得性遗传机制”——这简直就是赤裸裸的达尔文理论的对手拉马克的观点。

另外一位分子生物学家拜瑞·豪尔发表的研究结果,不仅证实了凯恩斯的断言,而且还补充了大自然中令人惊异的定向突变的证据。豪尔发现,他所培养的大肠杆菌不仅能产生所需的突变,而且其变异的速率,与按照随机理论统计得出的预期值相比,要高约一亿倍。不止如此,在对这些突变细菌的基因测序并将其分离出来之后,他发现只有那些有选择压力的领域发生了突变。这意味着,这些成功的小不点儿们并不是绝望而拼命地打出所有的突变牌来找到起作用的那张;相反,他们精确地敲定了那种刚好符合需要的变化。豪尔发现,有一些定向变异很复杂,以至于需要同时在两个基因上发生突变。他把这称为“极小可能发生事件中的极不可能”。这些奇迹般的变化,不应该是自然选择下的一系列随机累积的结果。它们(定向突变)身上,带着某种设计的味道。

豪尔和凯恩斯都宣称已经细心地排除了对实验结果的其他可能解释,坚持认为细菌正在指导其自身的突变。不过,在他们能够阐明无知的细菌如何明白自己需要何种突变之前,其他分子遗传学家几乎都不准备放弃严谨的达尔文理论。


3. 怪亦有道:发育的内在规律

自然界中的野生进化与计算机上的合成进化之间的差别就是:软件没有躯体。你用软盘将程序载入计算机上是一个直截了当的过程。如果你(希望得到更好的结果而)更改了程序代码,那么只消运行它,就能看到结果。在代码是什么以及它要做些什么之间没有多余的东西,只有运行代码的计算机硬件。

生物就大不相同了。如果我们把一段假想的DNA当成软件代码,对它做一个改动,那么,在改动的结果能证明自己之前,必须先相应地发育出一个有机实体。动物由受精卵发育成产卵者,也许要耗费许多年才能够完成。因此,生物代码改动后显现的效果,可以依据发育阶段的不同而有不同的评判。当初做过相同改动的代码,会在成长中的极小的胚胎上产生一种效果,而在性成熟的生命体上(如果胚胎能存活到那一步)产生另一种效果。在生物体的每一个阶段,代码的变动及其终端效果(比如,更长的手指)之间,存在一系列受物理或化学变化控制的中间实体——酶、蛋白质和生命组织,它们也必然会间接地受到代码改变的影响。这样一来就大大增加了变异的复杂度。运行程序的计算机是无法与之相比拟的。

你曾经只有句号那么大。时间不长,你就成了滚来滚去的一个多细胞球——很像池塘里的水藻。水流有力地冲刷着你。还记得吗?然后你长大了。你变成了海绵,变成了腔肠动物,全身就一根直肠子。吃就是你的生活内容。你渐渐长出了感觉外界的脊髓神经;慢慢添上了用以呼吸和咀嚼的腮颌。你又长出了用以游动和转向的尾巴。你不是鱼,而是一个扮演着鱼类胚胎角色的人类胚胎。你在每一个动物胚胎的幽灵中潜入潜出,重新扮演了为抵达终点而必须放弃的种种可能的角色。进化,就是对选择的屈从。要成长为新的物种,就要历经所有你不会再扮演的角色。

进化是善于创造的,也是保守的,总在凑合着用些现成的东西。生物极少会从头来过。过去是它的起点,而过去的点滴精华都凝结在生物体的发育过程中。当生物体开始它的发育时,它所做的数百万次妥协堵塞了它向其他方向进化的去路。没有躯体的进化是不受限制的进化。而有实体的进化则被受到诸多条件的约束,并且既有的成功阻止了其开倒车。不过,这些束缚也给予了进化一个立足之地。人工进化要想真的有所成就的话,也许同样需要依附一个躯体。

3.1 发育的时间维度

躯体成形之际,时间也就滴答开始了。沿着时间的维度,突变之花在一个生长的躯体中绽放。(这是迄今为止人工进化几乎没有的另一样东西:发育的时间。)改动胚胎的早期发育过程,实际上是对时间的大不敬。在胚胎发育过程中突变出现得越早,它对生物体的影响就越剧烈。这同时也削弱了那些用以对抗失败的约束。因此,发育过程中来得越早的突变,越不可能成功。换句话说,生物体越复杂,就越不可能出现早期变异

发育早期的变异往往牵一发而动全身。一个恰到好处的变动能够激发或者抹去千百万年的进化成果。果蝇身上著名的触足突变就是一个实例。这个单点突变搅乱了果蝇胚胎的足肢生成系统,在原本应该是触角的地方生出一条腿来。苦恼的果蝇出生时前额就会突出一只假肢——这都源自基因编码的一点小小改变,并随之触发了一系列的其他基因。任何一种怪物都能够通过这种方法孵化出来。这引发了发育生物学家们的好奇心:生物体身上的自我调控基因,是否能有目的地对基因做些改变,制造出有用的怪物来,这样不就绕过了达尔文那种渐进式的自然选择了吗?

3.2 怪物的有序性

奇怪的是,看起来这些怪物似乎遵循着某种内在的规律。在我们看来一头双头的小牛也许只是某种随机缺陷,其实并非如此。生物学家们研究这些特异性状时发现,同种类型的畸形会在许多物种中出现,而且其特异性状还能加以分类。比如说,独眼——这是在哺乳动物中相对常见的一种特异现象,包括天生独眼的人类;而有独眼这种异常现象的动物,不论是什么物种,鼻孔几乎总是长在它的眼睛上面。类似的,双头通常要比三头更为常见。无论是双头还是三头,都是没有什么优势的变异。既然这些怪物很少能生存下来,自然选择也就不可能在两者中有什么偏好。那么这种变异的指令必定来自于内部。

在十九世纪初叶及中叶,有一对法国父子组合——父亲圣提雷尔和儿子小圣提雷尔〔6〕——为这些自然界中的怪物设计了一套分类体系。这套分类体系与物种的林奈分类系统相对应:每种畸变都被赋予纲、目、科、属甚至种。他们的工作为畸形学这门研究怪物的现代科学奠定了基础。圣提雷尔父子暗示,有序形态比自然选择要更广泛。

哈佛比较动物学博物馆的皮埃·阿博彻,是为畸形学在进化生物学中的重要性而奔走呼喊的当代代言人。他认为畸形学是一幅被忽视的描绘活生物体强劲内在自组织进程的蓝图。他声称:“对于一个发育过程来说,畸形学能为其潜在的种种可能提供一份详尽的资料。尽管要面对极强的负选择〔7〕,畸形现象不但以一种有组织并离散的方式在发生着,而且还展现出普遍性的变形规律。这些特性并不仅限于畸形学的范围,相反,他们是所有可持续发展系统的普遍性质。”

3.3 内在论 vs 外在论

怪物们的这种有序内在——譬如从突变果蝇的前额上冒出来的发育完整的足——显示出一种深深潜伏着的内在力量,影响着有机体的外部形状。这种“内在论”与绝大多数适应论者所持的正统“外在论”截然不同。后者认为无处不在的选择才是塑造生物体外形的主要力量。而作为持反对意见的内在论者,他们认为,生物体的形态和功能是由内在的自组织过程决定的,而不仅仅是外部环境的选择压力。


结语

从共生到非随机突变,再到发育的内在规律,进化的图景远比我们想象的要复杂得多。共生为我们展示了生命如何通过合作和融合来加速进化,而非随机突变则揭示了基因组内部的智能选择机制。最后,发育的内在规律告诉我们,即使是最奇特的怪物,也可能遵循某种深层次的内在逻辑。这些发现不仅挑战了传统的达尔文主义,也为未来的进化研究开辟了新的道路。我们或许需要重新审视生命的本质,理解它不仅仅是自然选择的结果,更是内在自组织和外部环境共同作用的产物。 🌱💡