借一步网
作者:
在
策略梯度(Policy Gradient)是解决强化学习问题的一种方法。如果你对强化学习领域还不太了解,建议先阅读“A (Long) Peek into Reinforcement Learning » Key Concepts”一文,了解问题定义和基本概念。
为了帮助大家更好地理解文中的公式,以下是一些常用符号的解释:
强化学习的目标是找到一个最优的行为策略,使智能体获得最大的奖励。策略梯度方法直接针对策略进行建模和优化。策略通常用参数 (\theta) 表示为 (\pi_\theta(a \vert s))。奖励(目标)函数的值依赖于这个策略,然后可以应用各种算法来优化 (\theta) 以获得最佳奖励。
奖励函数定义为:
[ J(\theta) = \sum_{s \in \mathcal{S}} d^\pi(s) V^\pi(s) = \sum_{s \in \mathcal{S}} d^\pi(s) \sum_{a \in \mathcal{A}} \pi_\theta(a \vert s) Q^\pi(s, a) ]
其中,(d^\pi(s)) 是 (\pi_\theta) 的马尔可夫链的平稳分布(跟随策略 (\pi) 时的状态分布)。
通过梯度上升,我们可以沿着梯度 (\nabla_\theta J(\theta)) 的方向调整 (\theta),以找到能产生最高回报的最佳 (\theta)。
计算 (\nabla_\theta J(\theta)) 比较复杂,因为它既涉及动作选择(直接由 (\pi_\theta) 决定)又涉及状态分布(间接由 (\pi_\theta) 决定)。由于环境通常是未知的,因此难以估计策略更新对状态分布的影响。
幸运的是,策略梯度定理提供了一种简化梯度计算的优雅方法,不需要涉及状态分布 (d^\pi(.)) 的导数:
[\begin{aligned}\nabla_\theta J(\theta)&= \nabla_\theta \sum_{s \in \mathcal{S}} d^\pi(s) \sum_{a \in \mathcal{A}} Q^\pi(s, a) \pi_\theta(a \vert s) \&\propto \sum_{s \in \mathcal{S}} d^\pi(s) \sum_{a \in \mathcal{A}} Q^\pi(s, a) \nabla_\theta \pi_\theta(a \vert s)\end{aligned}]
这一部分内容较为密集,我们将通过推导来证明策略梯度定理的正确性。
首先,从状态值函数的导数开始:
[\begin{aligned}& \nabla_\theta V^\pi(s) \=& \nabla_\theta \left(\sum_{a \in \mathcal{A}} \pi_\theta(a \vert s) Q^\pi(s, a) \right) \=& \sum_{a \in \mathcal{A}} \left( \nabla_\theta \pi_\theta(a \vert s) Q^\pi(s, a) + \pi_\theta(a \vert s) \color{red}{\nabla_\theta Q^\pi(s, a)} \right) \quad \text{(乘积法则)} \=& \sum_{a \in \mathcal{A}} \left( \nabla_\theta \pi_\theta(a \vert s) Q^\pi(s, a) + \pi_\theta(a \vert s) \color{red}{\nabla_\theta \sum_{s’, r} P(s’,r \vert s,a)(r + V^\pi(s’))} \right) \quad \text{(扩展 (Q^\pi) 以包含未来状态值)} \=& \sum_{a \in \mathcal{A}} \left( \nabla_\theta \pi_\theta(a \vert s) Q^\pi(s, a) + \pi_\theta(a \vert s) \color{red}{\sum_{s’, r} P(s’,r \vert s,a) \nabla_\theta V^\pi(s’)} \right) \quad \text{(使用 (P(s’,r \vert s,a)))}\end{aligned}]
可以看到,导数中的一项涉及 (V^\pi(s’)) 的导数,而这又会引入更多的状态和动作。然而,通过数学推导和一些运算技巧,我们可以逐步简化并得出最终的策略梯度公式。
接下来,我们介绍几种常见的策略梯度算法:
REINFORCE 是一种基本的策略梯度方法,它通过采样轨迹来估计梯度,并利用这些估计值来更新策略参数。
Actor-Critic 方法结合了策略评估(critic)和策略改进(actor),使得算法在估计策略梯度时更加高效和稳定。
这种方法允许我们使用行为策略(behavior policy)来收集数据,并使用目标策略(target policy)来进行学习,从而提高数据利用率。
A3C. ��Asynchronous Advantage Actor-Critic)和 A2C(Advantage Actor-Critic)是 Actor-Critic 方法的改进版本,通过异步更新和同步更新来提高算法的效率和性能。
DDPG(Deep Deterministic Policy Gradient)和 TD3(Twin Delayed Deep Deterministic Policy Gradient)适用于连续动作空间,利用深度神经网络来近似策略和值函数。
PPO(Proximal Policy Optimization)和 TRPO(Trust Region Policy Optimization)通过引入信赖域和裁剪机制来确保策略更新的稳定性和有效性。
SAC(Soft Actor-Critic)引入了熵正则化项,使策略在探索和利用之间取得平衡。SAC 还可以自动调整温度参数,以优化探索过程。
除了上述几种常见的策略梯度算法,还有一些其他的变种和改进方法,如 SVPG(Stein Variational Policy Gradient)、IMPALA、DPG(Deterministic Policy Gradient)及其多智能体版本 MADDPG 等。
策略梯度算法在强化学习的各个领域中有广泛的应用,包括但不限于以下几个方面:
策略梯度算法提供了一种直接优化策略的方法,使得强化学习在解决复杂决策问题时更加高效和灵活。尽管计算过程相对复杂,但通过合理的算法设计和优化,可以在实际应用中取得显著的效果。
如果你对策略梯度算法感兴趣,不妨深入研究本文提到的各种算法和数学推导。通过不断实践和探索,你将能够掌握这一强大的工具,并将其应用于各种实际问题中。
希望这篇文章能帮助你更好地理解策略梯度算法及其应用。如果有任何问题或建议,欢迎在评论区留言讨论。
要发表评论,您必须先登录。
通知
引言
策略梯度(Policy Gradient)是解决强化学习问题的一种方法。如果你对强化学习领域还不太了解,建议先阅读“A (Long) Peek into Reinforcement Learning » Key Concepts”一文,了解问题定义和基本概念。
符号说明
为了帮助大家更好地理解文中的公式,以下是一些常用符号的解释:
策略梯度的核心思想
强化学习的目标是找到一个最优的行为策略,使智能体获得最大的奖励。策略梯度方法直接针对策略进行建模和优化。策略通常用参数 (\theta) 表示为 (\pi_\theta(a \vert s))。奖励(目标)函数的值依赖于这个策略,然后可以应用各种算法来优化 (\theta) 以获得最佳奖励。
奖励函数定义为:
[ J(\theta) = \sum_{s \in \mathcal{S}} d^\pi(s) V^\pi(s) = \sum_{s \in \mathcal{S}} d^\pi(s) \sum_{a \in \mathcal{A}} \pi_\theta(a \vert s) Q^\pi(s, a) ]
其中,(d^\pi(s)) 是 (\pi_\theta) 的马尔可夫链的平稳分布(跟随策略 (\pi) 时的状态分布)。
通过梯度上升,我们可以沿着梯度 (\nabla_\theta J(\theta)) 的方向调整 (\theta),以找到能产生最高回报的最佳 (\theta)。
策略梯度定理
计算 (\nabla_\theta J(\theta)) 比较复杂,因为它既涉及动作选择(直接由 (\pi_\theta) 决定)又涉及状态分布(间接由 (\pi_\theta) 决定)。由于环境通常是未知的,因此难以估计策略更新对状态分布的影响。
幸运的是,策略梯度定理提供了一种简化梯度计算的优雅方法,不需要涉及状态分布 (d^\pi(.)) 的导数:
[
\begin{aligned}
\nabla_\theta J(\theta)
&= \nabla_\theta \sum_{s \in \mathcal{S}} d^\pi(s) \sum_{a \in \mathcal{A}} Q^\pi(s, a) \pi_\theta(a \vert s) \
&\propto \sum_{s \in \mathcal{S}} d^\pi(s) \sum_{a \in \mathcal{A}} Q^\pi(s, a) \nabla_\theta \pi_\theta(a \vert s)
\end{aligned}
]
策略梯度定理的证明
这一部分内容较为密集,我们将通过推导来证明策略梯度定理的正确性。
首先,从状态值函数的导数开始:
[
\begin{aligned}
& \nabla_\theta V^\pi(s) \
=& \nabla_\theta \left(\sum_{a \in \mathcal{A}} \pi_\theta(a \vert s) Q^\pi(s, a) \right) \
=& \sum_{a \in \mathcal{A}} \left( \nabla_\theta \pi_\theta(a \vert s) Q^\pi(s, a) + \pi_\theta(a \vert s) \color{red}{\nabla_\theta Q^\pi(s, a)} \right) \quad \text{(乘积法则)} \
=& \sum_{a \in \mathcal{A}} \left( \nabla_\theta \pi_\theta(a \vert s) Q^\pi(s, a) + \pi_\theta(a \vert s) \color{red}{\nabla_\theta \sum_{s’, r} P(s’,r \vert s,a)(r + V^\pi(s’))} \right) \quad \text{(扩展 (Q^\pi) 以包含未来状态值)} \
=& \sum_{a \in \mathcal{A}} \left( \nabla_\theta \pi_\theta(a \vert s) Q^\pi(s, a) + \pi_\theta(a \vert s) \color{red}{\sum_{s’, r} P(s’,r \vert s,a) \nabla_\theta V^\pi(s’)} \right) \quad \text{(使用 (P(s’,r \vert s,a)))}
\end{aligned}
]
可以看到,导数中的一项涉及 (V^\pi(s’)) 的导数,而这又会引入更多的状态和动作。然而,通过数学推导和一些运算技巧,我们可以逐步简化并得出最终的策略梯度公式。
策略梯度算法
接下来,我们介绍几种常见的策略梯度算法:
1. REINFORCE
REINFORCE 是一种基本的策略梯度方法,它通过采样轨迹来估计梯度,并利用这些估计值来更新策略参数。
2. Actor-Critic
Actor-Critic 方法结合了策略评估(critic)和策略改进(actor),使得算法在估计策略梯度时更加高效和稳定。
3. Off-Policy Policy Gradient
这种方法允许我们使用行为策略(behavior policy)来收集数据,并使用目标策略(target policy)来进行学习,从而提高数据利用率。
4. A3C & A2C
A3C. ��Asynchronous Advantage Actor-Critic)和 A2C(Advantage Actor-Critic)是 Actor-Critic 方法的改进版本,通过异步更新和同步更新来提高算法的效率和性能。
5. DDPG & TD3
DDPG(Deep Deterministic Policy Gradient)和 TD3(Twin Delayed Deep Deterministic Policy Gradient)适用于连续动作空间,利用深度神经网络来近似策略和值函数。
6. PPO & TRPO
PPO(Proximal Policy Optimization)和 TRPO(Trust Region Policy Optimization)通过引入信赖域和裁剪机制来确保策略更新的稳定性和有效性。
7. SAC
SAC(Soft Actor-Critic)引入了熵正则化项,使策略在探索和利用之间取得平衡。SAC 还可以自动调整温度参数,以优化探索过程。
8. 其他算法
除了上述几种常见的策略梯度算法,还有一些其他的变种和改进方法,如 SVPG(Stein Variational Policy Gradient)、IMPALA、DPG(Deterministic Policy Gradient)及其多智能体版本 MADDPG 等。
策略梯度算法的应用
策略梯度算法在强化学习的各个领域中有广泛的应用,包括但不限于以下几个方面:
结论
策略梯度算法提供了一种直接优化策略的方法,使得强化学习在解决复杂决策问题时更加高效和灵活。尽管计算过程相对复杂,但通过合理的算法设计和优化,可以在实际应用中取得显著的效果。
如果你对策略梯度算法感兴趣,不妨深入研究本文提到的各种算法和数学推导。通过不断实践和探索,你将能够掌握这一强大的工具,并将其应用于各种实际问题中。
参考文献
希望这篇文章能帮助你更好地理解策略梯度算法及其应用。如果有任何问题或建议,欢迎在评论区留言讨论。