Stewart Platform:原理、架构与设计思想详解

六自由度并联机构的技术解析与应用

info 基本介绍与定义

Stewart Platform(斯图尔特平台)是一种空间并联的六自由度运动机构,也称为六自由度平台。它由一个固定平台(基座)和一个可移动平台通过六个可伸缩的支腿(作动器)相连而成,通过改变六个支腿的长度实现平台的六个自由度的运动。

Stewart Platform结构示意图

Stewart Platform结构示意图

Stewart Platform最初由V.E. Gough于1954年设计用于轮胎测试,后来由D. Stewart在1965年将其应用于飞行模拟器,因此得名。这种机构具有高刚度、高精度、高负载能力等特点,广泛应用于飞行模拟器、汽车驾驶模拟、虚拟现实、精密定位等领域。

architecture 结构组成与架构

Stewart Platform主要由以下几个部分组成:

view_in_ar 固定平台(基座)

作为整个机构的支撑基础,通常固定不动,提供稳定的参考坐标系。固定平台上安装有六个球铰或万向节,用于连接六个可伸缩支腿。

view_in_ar 移动平台

位于机构顶部,通过六个可伸缩支腿与固定平台相连。移动平台上同样安装有六个球铰或万向节,用于连接支腿的另一端。移动平台可以相对于固定平台进行六自由度运动。

linear_scale 可伸缩支腿(作动器)

连接固定平台和移动平台的六个可伸缩支腿,通常采用液压缸、电动推杆或直线电机等形式。每个支腿可以独立控制其长度,从而实现平台的精确定位和姿态控制。

rotate_90_degrees_ccw 球铰/万向节

位于支腿两端,连接支腿与固定平台和移动平台。球铰或万向节允许支腿在多个方向上旋转,从而实现平台的复杂运动。高质量的球铰是保证平台精度和寿命的关键部件。

Stewart Platform架构示意图

Stewart Platform架构示意图

3d_rotation 工作原理与六自由度运动分析

Stewart Platform的工作原理基于并联机构的设计理念,通过六个独立的线性致动器连接固定基座与移动平台,实现对平台上负载在三维空间内六个自由度的精确控制。

open_with

平移自由度

沿X、Y、Z三个轴向的直线运动,称为Surge(前后)、Sway(左右)、Heave(上下)

rotate_right

旋转自由度

绕X、Y、Z三个轴向的旋转运动,称为Roll(横滚)、Pitch(俯仰)、Yaw(偏航)

Stewart Platform运动学分析

Stewart Platform运动学分析示意图

functions 运动学分析

Stewart Platform的运动学分析主要包括正解和逆解两个方面:

arrow_upward 运动学逆解

运动学逆解是指根据给定的移动平台的位置和姿态,计算出六个作动器的长度。这是Stewart Platform控制的基础,通常通过以下公式计算:

Li = |T + R·pi - bi|

其中,Li是第i个支腿的长度,T是平移向量,R是旋转矩阵,pi是移动平台上第i个铰接点在移动坐标系中的位置,bi是固定平台上第i个铰接点在固定坐标系中的位置。

arrow_downward 运动学正解

运动学正解是指根据六个作动器的长度,计算出移动平台的位置和姿态。这是一个复杂的非线性问题,通常需要数值方法求解。运动学正解的数学模型可以表示为:

|T + R·pi - bi| = Li (i = 1, 2, ..., 6)

这是一个包含6个方程的非线性方程组,通常有40个可能的解,但在实际应用中,只有少数解是可行的。

lightbulb 设计思想与关键参数

Stewart Platform的设计思想基于并联机构的原理,与传统的串联机构相比,具有独特的优势。设计Stewart Platform时需要考虑以下关键参数:

straighten 几何参数

  • radio_button_checked 固定平台和移动平台的半径比
  • radio_button_checked 支腿的初始长度和最大伸缩范围
  • radio_button_checked 铰接点的分布方式和角度
  • radio_button_checked 平台的高度(初始位置时两平台间的距离)

speed 性能参数

  • radio_button_checked 工作空间的大小和形状
  • radio_button_checked 定位精度和重复定位精度
  • radio_button_checked 最大负载能力和刚度
  • radio_button_checked 运动速度和加速度

settings 优化设计考虑因素

在设计Stewart Platform时,需要综合考虑以下因素进行优化:

  • check_circle 工作空间优化:通过调整几何参数,最大化有效工作空间,避免奇异位置
  • check_circle 刚度优化:优化支腿的分布和角度,提高平台的整体刚度,减少变形
  • check_circle 精度优化:减少误差传递,提高定位精度和重复定位精度
  • check_circle 动力学优化:考虑惯性、摩擦等因素,优化动态性能
  • check_circle 控制系统设计:选择合适的控制算法,如PID控制、自适应控制等,提高系统响应速度和稳定性
Stewart Platform控制系统

Stewart Platform控制系统流程图

category 应用领域

由于其独特的结构和优异的性能,Stewart Platform在多个领域得到了广泛应用:

flight

飞行模拟器

模拟飞机在各种飞行条件下的运动,提供真实的飞行体验,用于飞行员培训

directions_car

汽车驾驶模拟

模拟车辆在不同路况下的运动,用于驾驶员培训和车辆性能测试

precision_manufacturing

精密加工

用于高精度机床,实现复杂曲面的精密加工,提高加工精度和效率

biotech

医疗设备

用于手术机器人、康复设备等,提供精确的运动控制和定位

videogame_asset

娱乐体验

用于主题公园、虚拟现实游戏等,提供沉浸式的运动体验

satellite_alt

航空航天

用于卫星天线定位、航天器部件测试等,提供高精度的运动控制

compare 优势与局限性

优势

  • add_circle 高刚度:并联结构使负载分布到多个支腿,整体刚度高于串联机构
  • add_circle 高精度:误差不累积,定位精度和重复定位精度高
  • add_circle 高负载能力:负载由多个支腿共同承担,承载能力强
  • add_circle 低惯性:驱动器靠近基座,运动部件质量小,动态响应快
  • add_circle 结构紧凑:相比串联机构,结构更为紧凑,占用空间小

局限性

  • remove_circle 工作空间有限:工作空间相对较小,且形状复杂
  • remove_circle 奇异位置:在某些位置会出现奇异现象,导致控制困难
  • remove_circle 运动学正解复杂:计算复杂,实时控制难度大
  • remove_circle 设计复杂:结构设计和参数优化难度大
  • remove_circle 成本较高:精密部件和复杂控制系统导致成本较高
Stewart Platform运动分析

Stewart Platform运动分析示意图