标签: 搜索

  • 用XGBoost玩转排序任务:从原理到实战

    在信息爆炸的时代,如何从海量信息中快速找到我们想要的内容,成为了一个重要的挑战。排序学习(Learning to Rank,LTR)应运而生,它利用机器学习的力量,帮助我们对信息进行排序,将最符合用户需求的结果排在最前面。XGBoost作为一种强大的机器学习算法,在排序任务中也发挥着重要作用。

    排序任务:让信息井然有序

    排序任务广泛应用于搜索引擎、推荐系统、广告平台等领域。例如,当你搜索“美食”时,搜索引擎会根据相关性、受欢迎程度等因素对结果进行排序,将最符合你口味的餐厅排在最前面。

    XGBoost:排序任务的利器

    XGBoost(Extreme Gradient Boosting)是一种基于梯度提升树算法的机器学习模型,它在各种机器学习任务中都表现出色,包括排序任务。

    XGBoost在排序任务中主要使用pairwise rank方法。这种方法将排序问题转化为成对比较问题,即比较两个文档(doc)与当前查询(query)的相关程度,并根据比较结果对文档进行排序。

    XGBoost排序任务的流程

    1. 训练样本输入: 将包含query和doc的训练样本输入XGBoost模型。
    2. 特征候选集: XGBoost模型会根据训练样本,自动学习特征候选集。
    3. 寻找划分点: XGBoost模型会根据特征候选集,使用贪婪算法寻找最佳划分点,将数据分成不同的子集。
    4. 生成树: 重复步骤3,直到不能再分裂生成一棵完整的树。
    5. 拟合模型: XGBoost模型会根据训练样本,使用pairwise loss(AUC)来拟合模型,生成下一棵树。
    6. 训练完成: 当生成设定数目的树后,训练完成。
    7. 测试样本输入: 将测试样本输入训练好的XGBoost模型。
    8. 打分: XGBoost模型会根据训练所得模型和打分机制,对每个对进行打分。
    9. 排序: 根据打分结果,对doc进行排序。

    打分机制:相关度的量化

    XGBoost的打分机制是基于树模型的预测结果。每个对在每棵树上都会获得一个分数,最终的打分结果是所有树上分数的累加。

    需要注意的是,XGBoost的打分结果是相关度的一种表示,并不映射到某个具体数值。

    XGBoost排序任务的优势

    • 强大的预测能力: XGBoost模型能够学习复杂的特征关系,并做出准确的预测。
    • 可解释性: XGBoost模型能够提供特征重要性信息,帮助我们理解模型的决策过程。
    • 高效性: XGBoost模型能够高效地处理大规模数据。

    实战案例:用XGBoost进行搜索结果排序

    假设我们有一个搜索引擎,需要对搜索结果进行排序。我们可以使用XGBoost模型来训练一个排序模型,并利用该模型对搜索结果进行排序。

    1. 数据准备: 收集包含query和doc的训练数据,并提取相关特征,例如query和doc的文本相似度、doc的点击率等。
    2. 模型训练: 使用XGBoost模型训练排序模型,并使用pairwise loss作为目标函数。
    3. 模型评估: 使用测试数据评估模型的性能,例如AUC指标。
    4. 模型部署: 将训练好的模型部署到搜索引擎中,用于对搜索结果进行排序。

    总结

    XGBoost是一种强大的机器学习算法,它在排序任务中表现出色。通过使用XGBoost模型,我们可以构建高效、准确的排序系统,帮助用户快速找到他们想要的信息。

    参考文献

    • 【1】机器学习算法-初识Learning to Rank
    • 【2】浅谈Learning to Rank中的RankNet和LambdaRank算法
    • 【3】从L2R开始理解一下xgboost的 ‘objective’: ‘rank:pairwise’参数
    • 【4】XGBoost Documentation
    • 【5】xgboost/demo/rank/
    • 【6】机器学习排序之Learning to Rank简单介绍
    • 【7】通俗理解kaggle比赛大杀器xgboost
    • 【8】如何理解机器学习和统计中的AUC?
    • 【9】XGBoost learning-to-rank model to predictions core function?
    • 【10】『我爱机器学习』集成学习(三)XGBoost
    • 【11】XGBoost_源码初探
    • 【12】XGBoost Parameters

    深入解析 Learning to Rank (LTR)

    Learning to Rank (LTR) 是一种机器学习技术,用于构建能够对项目列表进行排序的模型,以最佳地满足用户的搜索意图。它在信息检索、推荐系统、自然语言处理等领域都有着广泛的应用。

    LTR 的核心思想:

    LTR 的核心思想是利用机器学习算法,从标注数据中学习一个排序函数,该函数能够预测不同项目与特定查询的相关性,并根据相关性对项目进行排序。

    LTR 的应用场景:

    • 搜索引擎: 根据用户查询,对网页进行排序,将最相关的网页排在前面。
    • 推荐系统: 根据用户的历史行为和偏好,推荐用户可能感兴趣的商品、电影、音乐等。
    • 机器翻译: 对多个候选翻译结果进行排序,选择最符合语法和语义的翻译结果。
    • 问答系统: 对多个候选答案进行排序,选择最有可能回答用户问题的答案。

    LTR 的工作流程:

    1. 数据收集和标注: 收集包含查询和相关项目的数据集,并对每个查询-项目对进行相关性标注,例如,使用 0 到 4 的等级表示相关性从低到高。
    2. 特征工程: 从查询、项目和上下文信息中提取特征,例如,查询词的 TF-IDF 值、项目的 PageRank 值、用户历史点击率等。
    3. 模型训练: 选择合适的 LTR 算法,使用标注数据和提取的特征训练排序模型。
    4. 模型评估: 使用测试集评估模型的排序性能,常用的指标包括 NDCG、MAP、MRR 等。
    5. 模型部署: 将训练好的模型部署到实际系统中,对新的查询进行排序。

    LTR 的主要类型:

    LTR 算法主要分为三类:

    • Pointwise: 将排序问题转化为单个项目的分类或回归问题,例如,预测每个项目的相关性得分,然后根据得分进行排序。
      • 优点: 简单易实现,训练速度快。
      • 缺点: 忽略了项目之间的相对顺序关系,可能导致排序结果不准确。
      • 常用算法: 线性回归、逻辑回归、支持向量机等。
    • Pairwise: 将排序问题转化为项目对的分类问题,例如,预测哪个项目比另一个项目更相关,然后根据预测结果进行排序。
      • 优点: 考虑了项目之间的相对顺序关系,排序结果更准确。
      • 缺点: 训练速度比 Pointwise 慢,需要处理的样本数量更多。
      • 常用算法: RankNet、LambdaRank、RankSVM 等。
    • Listwise: 将整个项目列表作为一个训练样本,直接优化排序列表的整体指标,例如,NDCG、MAP 等。
      • 优点: 直接优化排序指标,排序结果最准确。
      • 缺点: 训练速度最慢,算法复杂度高。
      • 常用算法: ListNet、AdaRank、LambdaMART 等。

    LTR 的优势:

    • 自动化: LTR 可以自动从数据中学习排序函数,无需人工制定复杂的排序规则。
    • 个性化: LTR 可以根据用户的历史行为和偏好,进行个性化的排序。
    • 可扩展性: LTR 可以处理大规模数据集和高维特征空间。

    LTR 的挑战:

    • 数据标注成本高: LTR 需要大量的标注数据,而标注数据的获取成本较高。
    • 模型可解释性差: 一些 LTR 模型,例如深度学习模型,可解释性较差,难以理解模型的排序依据。
    • 排序指标的选择: 不同的排序指标适用于不同的应用场景,选择合适的排序指标至关重要。

    总而言之,LTR 是一种强大的机器学习技术,可以帮助我们构建更智能、更精准的排序系统。随着技术的不断发展,LTR 将在更多领域发挥重要作用。


    使用 XGBoost 来优化搜索结果排序是一个很好的方法。以下是一个简单的步骤:

    1. 数据准备:收集一组包含搜索查询、搜索结果及相关性得分的训练数据。这些数据将用于训练 XGBoost 模型。
    2. 特征工程:根据搜索查询和结果内容,抽取出一些有用的特征,如关键词匹配度、标题相似度、点击率等。这些特征将作为 XGBoost 模型的输入。
      • 搜索词特征:关键词长度、关键词出现频率、关键词 TF-IDF 等。
      • 用户特征:用户年龄、性别、地理位置、历史搜索行为等。
    3. 模型训练:使用 XGBoost 算法在训练数据上训练一个排序模型。可以调整一些超参数,如树的深度、学习率等,以优化模型性能。
    4. 模型部署:将训练好的 XGBoost 模型集成到搜索系统中,当用户进行搜索时,根据结果的特征信息,利用模型进行实时预测,得到最终的排序结果。
    5. 持续优化:随着时间的推移,可以收集新的训练数据,周期性地重新训练模型,以适应搜索环境的变化。

    下面是一个简单的 Python 代码示例,展示如何使用 XGBoost 进行搜索结果排序:

    import xgboost as xgb
    from sklearn.model_selection import train_test_split
    
    # 假设数据已经准备好,包含搜索结果特征、搜索词特征和用户特征
    X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)
    
    # 创建并训练 XGBoost 模型
    model = xgb.XGBRanker(objective='rank:pairwise',
                         learning_rate=0.1,
                         max_depth=3,
                         n_estimators=100,
                         random_state=42)
    model.fit(X_train, y_train,
              eval_set=[(X_val, y_val)],
              eval_metric='ndcg@5',
              early_stopping_rounds=10)
    
    # 对新的搜索结果进行排序
    new_X = ...  # 新的搜索结果特征、搜索词特征和用户特征
    rankings = model.predict(new_X. sorted_results = new_X[np.argsort(rankings)[::-1]]

    这只是一个简单的示例,实际应用中可能需要更复杂的特征工程和模型优化。


  • 如何用XGBoost对搜索结果进行优化排序

    XGBoost是一种强大的梯度提升算法,可以用于对搜索结果进行排序,从而提升搜索质量。下面将详细说明如何使用XGBoost进行搜索结果优化排序:

    1. 数据准备

    • 收集数据: 首先需要收集搜索结果的相关数据,包括:
      • 查询: 用户输入的搜索词
      • 文档: 与查询相关的搜索结果,每个文档包含标题、摘要、链接等信息
      • 相关性标签: 人工标注的查询与文档之间的相关性等级,例如:
        • 完美: 文档完全满足查询意图
        • 优秀: 文档高度相关,但可能缺少一些细节
        • 良好: 文档部分相关,可以提供一些有用信息
        • 较差: 文档与查询不太相关
        • 无关: 文档与查询完全无关
    • 特征工程: 将原始数据转换成模型可以理解的特征向量,常用的特征包括:
      • 查询特征: 查询词长度、查询词类型(如人物、地点、事件)、查询词的IDF值等
      • 文档特征: 文档长度、文档中关键词的TF-IDF值、文档的PageRank值、文档的新鲜度等
      • 查询-文档交互特征: 查询词与文档标题的相似度、查询词与文档摘要的相似度、查询词在文档中出现的频率等
    • 数据集划分: 将收集到的数据划分为训练集、验证集和测试集,用于模型训练、参数调优和最终效果评估。

    2. 模型训练

    • 选择目标函数: XGBoost支持多种目标函数,对于搜索结果排序问题,常用的目标函数是 Rank:Pairwise,它会比较两个文档的预测得分,并根据它们的真实相关性标签进行惩罚。
    • 设置评估指标: 选择合适的评估指标来衡量模型的排序效果,常用的指标包括:
      • NDCG (Normalized Discounted Cumulative Gain): 考虑了文档的相关性和位置,值越高表示排序效果越好。
      • MAP (Mean Average Precision): 计算每个查询的平均准确率,然后对所有查询进行平均,值越高表示排序效果越好。
    • 调整超参数: XGBoost 有许多超参数可以调整,例如树的数量、树的深度、学习率等。可以使用网格搜索或贝叶斯优化等方法来找到最佳的超参数组合。

    3. 模型评估和部署

    • 模型评估: 使用测试集评估训练好的模型的排序效果,并分析模型的优缺点。
    • 模型部署: 将训练好的模型部署到线上搜索系统中,对新的查询进行实时排序。

    示例代码 (Python)

    import xgboost as xgb
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import ndcg_score
    
    # 加载数据
    # 假设数据已经处理成特征向量,并存储在 X 和 y 中
    # X. 特征矩阵,每行代表一个查询-文档对
    # y: 相关性标签,值越大表示相关性越高
    
    # 划分数据集
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    
    # 定义 XGBoost 排序模型
    params = {
        'objective': 'rank:pairwise',
        'eval_metric': 'ndcg',
        'eta': 0.1,
        'max_depth': 6,
        'n_estimators': 100,
    }
    dtrain = xgb.DMatrix(X_train, label=y_train)
    dtest = xgb.DMatrix(X_test, label=y_test)
    
    # 训练模型
    model = xgb.train(params, dtrain, evals=[(dtest, 'eval')], num_boost_round=1000, early_stopping_rounds=10)
    
    # 预测排序
    y_pred = model.predict(dtest)
    
    # 评估模型
    ndcg = ndcg_score([y_test], [y_pred])
    print(f"NDCG: {ndcg}")
    
    # 保存模型
    model.save_model("xgb_ranking_model.bin")

    总结

    使用 XGBoost 对搜索结果进行优化排序是一个复杂的过程,需要进行数据准备、特征工程、模型训练、参数调优、模型评估和部署等多个步骤。同时,需要根据具体的业务场景和数据特点选择合适的特征、模型和评估指标,才能取得最佳的排序效果。


    NDCG 和 MAP
    解析:

    在信息检索领域,评估排序结果好坏是非常重要的环节。NDCG 和 MAP 是常用的两种评估指标,它们都考虑了文档的相关性和位置信息,但计算方式有所不同。

    1. NDCG (Normalized Discounted Cumulative Gain): 归一化折损累计增益

    NDCG 是一种衡量排序质量的指标,它考虑了文档的相关性和位置,认为排名靠前的相关文档比排名靠后的相关文档更有价值。

    计算步骤:

    1. 计算每个文档的增益 (Gain): 根据文档的相关性等级,赋予每个文档一个增益值。例如,可以使用以下规则:
      • 完美: 3分
      • 优秀: 2分
      • 良好: 1分
      • 较差: 0分
      • 无关: 0分
    2. 计算累计增益 (Cumulative Gain): 将前 k 个文档的增益值累加起来,得到 CG@k。
    3. 计算折损累计增益 (Discounted Cumulative Gain): 对 CG@k 进行折损,将排名靠后的文档的增益值降低。常用的折损函数是 1/log2(i+1),其中 i 是文档的排名。
      • DCG@k = Σ(i=1 to k) [Gain(i) / log2(i+1)]
    4. 计算理想折损累计增益 (Ideal Discounted Cumulative Gain): 对完美排序下的 DCG@k 进行计算,得到 IDCG@k。完美排序是指所有相关文档都排在最前面。
    5. 计算归一化折损累计增益 (Normalized Discounted Cumulative Gain): 将 DCG@k 除以 IDCG@k,得到 NDCG@k。
      • NDCG@k = DCG@k / IDCG@k

    NDCG 的取值范围是 [0, 1],值越高表示排序效果越好。

    示例:

    假设有 5 个文档,相关性等级分别为:[完美, 优秀, 无关, 良好, 较差],则:

    • 完美排序: [完美, 优秀, 良好, 较差, 无关]
    • 模型排序: [完美, 无关, 优秀, 良好, 较差]

    计算 NDCG@3:

    • 完美排序:
      • DCG@3 = 3/log2(2) + 2/log2(3) + 1/log2(4) ≈ 4.26
      • IDCG@3 = 4.26 (因为是完美排序)
      • NDCG@3 = 4.26 / 4.26 = 1
    • 模型排序:
      • DCG@3 = 3/log2(2) + 0/log2(3) + 2/log2(4) ≈ 3.5
      • IDCG@3 = 4.26
      • NDCG@3 = 3.5 / 4.26 ≈ 0.82

    2. MAP (Mean Average Precision): 平均准确率均值

    MAP 是一种衡量检索系统在所有查询上的平均性能的指标,它考虑了每个查询的平均准确率 (Average Precision)。

    计算步骤:

    1. 计算每个查询的准确率 (Precision): 对于每个查询,计算前 k 个文档的准确率 P@k,即前 k 个文档中相关文档的比例。
    2. 计算每个查询的平均准确率 (Average Precision): 对于每个查询,计算所有相关文档位置上的准确率的平均值。
      • AP = Σ(k=1 to n) [P@k * rel(k)] / num_relevant_docs
      • 其中 n 是文档总数,rel(k) 表示第 k 个文档是否相关 (相关为 1,不相关为 0),num_relevant_docs 是相关文档的总数。
    3. 计算所有查询的平均准确率均值 (Mean Average Precision): 将所有查询的 AP 值进行平均。
      • MAP = Σ(q=1 to Q. [AP(q)] / Q
      • 其中 Q 是查询的总数。

    MAP 的取值范围也是 [0, 1],值越高表示排序效果越好。

    示例:

    假设有两个查询,每个查询返回 5 个文档,相关性标签如下:

    • 查询 1: [完美, 优秀, 无关, 良好, 较差]
    • 查询 2: [优秀, 无关, 良好, 完美, 较差]

    计算 MAP:

    • 查询 1:
      • P@1 = 1/1 = 1, P@2 = 2/2 = 1, P@3 = 2/3 ≈ 0.67, P@4 = 3/4 = 0.75, P@5 = 3/5 = 0.6
      • AP = (11 + 11 + 0.670 + 0.751 + 0.6*0) / 3 ≈ 0.81
    • 查询 2:
      • P@1 = 1/1 = 1, P@2 = 1/2 = 0.5, P@3 = 2/3 ≈ 0.67, P@4 = 3/4 = 0.75, P@5 = 3/5 = 0.6
      • AP = (11 + 0.51 + 0.671 + 0.751 + 0.6*0) / 4 ≈ 0.73
    • MAP = (0.81 + 0.73) / 2 = 0.77

    总结:

    • NDCG 更加关注排名靠前的文档,适用于评估 Top-K 排序结果。
    • MAP 综合考虑了所有相关文档的位置,适用于评估整体排序性能。

    选择哪种指标取决于具体的应用场景和需求。


    NDCG 和 MAP 计算实例详解

    为了更清晰地解释 NDCG 和 MAP 的计算过程,我们用一个具体的例子来说明。

    假设有一个搜索引擎,用户提交了两个查询 Query 1 和 Query 2,每个查询返回了 5 个结果,每个结果的相关性等级已经标注好,如下表所示:

    查询排名文档相关性等级Gain
    Query 11A完美3
    2B优秀2
    3C无关0
    4D良好1
    5E较差0
    Query 21F优秀2
    2G无关0
    3H良好1
    4I完美3
    5J较差0

    1. NDCG 计算

    我们以 NDCG@3 为例,分别计算 Query 1 和 Query 2 的 NDCG@3,然后取平均值。

    Query 1:

    • 计算 DCG@3:
      • DCG@3 = 3/log2(1+1) + 2/log2(2+1) + 0/log2(3+1) ≈ 3.52
    • 计算 IDCG@3:
      • 完美排序为:[A, B, D],因此:
      • IDCG@3 = 3/log2(1+1) + 2/log2(2+1) + 1/log2(3+1) ≈ 4.26
    • 计算 NDCG@3:
      • NDCG@3 = DCG@3 / IDCG@3 ≈ 3.52 / 4.26 ≈ 0.83

    Query 2:

    • 计算 DCG@3:
      • DCG@3 = 2/log2(1+1) + 0/log2(2+1) + 1/log2(3+1) ≈ 2.13
    • 计算 IDCG@3:
      • 完美排序为:[F, H, I],因此:
      • IDCG@3 = 2/log2(1+1) + 1/log2(2+1) + 3/log2(3+1) ≈ 4.52
    • 计算 NDCG@3:
      • NDCG@3 = DCG@3 / IDCG@3 ≈ 2.13 / 4.52 ≈ 0.47

    平均 NDCG@3:

    • (0.83 + 0.47) / 2 = 0.65

    2. MAP 计算

    分别计算 Query 1 和 Query 2 的 AP (Average Precision),然后取平均值。

    Query 1:

    • 相关文档有:A, B, D. 共 3 个
    • P@1 = 1/1 = 1
    • P@2 = 2/2 = 1
    • P@3 = 2/3 ≈ 0.67
    • P@4 = 3/4 = 0.75
    • P@5 = 3/5 = 0.6
    • AP = (11 + 11 + 0.670 + 0.751 + 0.6*0) / 3 ≈ 0.81

    Query 2:

    • 相关文档有:F, H, I. 共 3 个
    • P@1 = 1/1 = 1
    • P@2 = 1/2 = 0.5
    • P@3 = 2/3 ≈ 0.67
    • P@4 = 3/4 = 0.75
    • P@5 = 3/5 = 0.6
    • AP = (11 + 0.50 + 0.671 + 0.751 + 0.6*0) / 3 ≈ 0.64

    平均 MAP:

    • (0.81 + 0.64) / 2 = 0.725

    总结:

    通过以上例子,我们可以看到 NDCG 和 MAP 都是用来评估搜索结果排序质量的指标,但它们侧重点有所不同。NDCG 更关注排名靠前的结果,而 MAP 则综合考虑了所有相关文档的位置。选择哪种指标取决于具体的应用场景和需求。


  • 对话式搜索引擎的排名操纵:一场悄无声息的“战争”

    近年来,大型语言模型(LLM)作为强大的对话式代理,在搜索引擎领域掀起了一场革命。像OpenAI和perplexity.ai这样的公司推出了完全对话式的搜索服务,而谷歌等传统搜索引擎也开始将生成式内容融入其中。这些对话式搜索引擎通过将检索到的网站文本加载到LLM的上下文中,进行摘要和解释,为用户提供更人性化的搜索体验。

    然而,这种革命性的搜索技术也带来了一个不容忽视的问题:对话式搜索引擎是否可以被操纵,从而始终推崇某些特定的内容?这个问题在商业领域尤其重要,因为网站排名往往与企业的收入和声誉息息相关。

    操纵对话式搜索引擎:一场隐形的“战争”

    本文将深入探讨对话式搜索引擎的排名机制,并揭示其在对抗性操纵面前的脆弱性。研究人员发现,通过在网站内容中注入对抗性提示,可以有效地影响LLM的排名结果,从而将某些网站置于搜索结果的顶端。

    LLM的“弱点”:对抗性提示注入

    LLM虽然强大,但它们也存在一些弱点。近年来,研究人员发现,LLM很容易受到“越狱”和提示注入攻击的影响。这些攻击通过在LLM的输入中插入对抗性字符串,破坏LLM的安全性和质量目标。

    对话式搜索引擎的“弱点”:排名机制的脆弱性

    对话式搜索引擎通常采用检索增强生成(RAG)架构,通过检索相关文本并将其加载到LLM的上下文中来生成答案。研究人员发现,RAG模型的排名机制容易受到对抗性提示注入攻击的影响。

    实验结果:对抗性提示注入的有效性

    研究人员通过实验验证了对抗性提示注入的有效性。他们构建了一个名为RagDoll的数据集,包含来自不同产品类别(如个人护理、电子产品、家用电器等)的真实网站。实验结果表明,不同的LLM在优先考虑产品名称、文档内容和上下文位置方面存在显著差异。

    更重要的是,研究人员发现,通过使用基于攻击树的“越狱”技术,可以可靠地将排名较低的网站提升到搜索结果的顶端。这些攻击甚至可以转移到像perplexity.ai这样的先进对话式搜索引擎。

    未来展望:防御对抗性提示注入攻击

    研究人员强调,对话式搜索引擎的脆弱性是一个亟待解决的问题。他们呼吁更多研究人员关注LLM的鲁棒性,并开发有效的防御机制,以抵御对抗性提示注入攻击。

    参考文献

    总结

    对话式搜索引擎的崛起为我们带来了更加人性化的搜索体验,但也带来了新的安全挑战。对抗性提示注入攻击的出现表明,对话式搜索引擎的排名机制存在漏洞,这可能会对企业的利益和用户的搜索体验造成负面影响。因此,加强LLM的鲁棒性,开发有效的防御机制,将成为未来对话式搜索引擎发展的关键。

  • 人生梦想 - 关注前沿的计算机技术 acejoy.com