借一步网
作者:
在
在新闻推荐领域,准确捕捉用户的兴趣至关重要。用户的兴趣可以分为长期兴趣和短期兴趣两类。长期兴趣指的是用户长期以来稳定的偏好,而短期兴趣则指的是用户在短期内表现出的兴趣变化。LSTUR 算法结合了用户的长期兴趣和短期兴趣,能够更精准地为用户推荐新闻。
LSTUR 算法的核心思想是分别学习用户的长期表示和短期表示,并将两者融合,得到最终的用户表示。具体来说,LSTUR 算法包含以下几个步骤:
MIND 数据集是一个大规模英文新闻数据集,包含了 1,000,000 用户、161,013 篇新闻文章和 15,777,377 条点击日志。每篇新闻文章包含丰富的文本内容,包括标题、摘要、正文、类别和实体。每条点击日志包含用户的点击事件、未点击事件以及该用户在该次点击之前的历史点击行为。
本示例使用 MIND 数据集的子集 MIND demo,包含 5,000 用户、9,432 篇新闻文章和 6,134 条点击日志。
首先,需要下载 MIND demo 数据集和预训练的 GloVe 词嵌入文件。
tmpdir = TemporaryDirectory() data_path = tmpdir.name # ... 定义数据文件路径 ... mind_url, mind_train_dataset, mind_dev_dataset, mind_utils = get_mind_data_set(MIND_type) if not os.path.exists(train_news_file): download_deeprec_resources(mind_url, os.path.join(data_path, 'train'), mind_train_dataset) # ... 下载验证集和词嵌入文件 ...
然后,设置模型超参数,并创建 LSTUR 模型。
# 设置超参数 epochs = 5 seed = 40 batch_size = 32 # ... # 创建 LSTUR 模型 hparams = prepare_hparams(yaml_file, wordEmb_file=wordEmb_file, wordDict_file=wordDict_file, userDict_file=userDict_file, batch_size=batch_size, epochs=epochs) iterator = MINDIterator model = LSTURModel(hparams, iterator, seed=seed)
最后,使用训练集和验证集对模型进行训练。
model.fit(train_news_file, train_behaviors_file, valid_news_file, valid_behaviors_file)
模型训练完成后,可以使用验证集对模型性能进行评估。
res_syn = model.run_eval(valid_news_file, valid_behaviors_file) print(res_syn)
评估指标包括 Group AUC、Mean MRR、NDCG@5 和 NDCG@10。
训练完成后,可以使用 save_weights 方法保存模型参数。
save_weights
model_path = os.path.join(data_path, "model") os.makedirs(model_path, exist_ok=True) model.model.save_weights(os.path.join(model_path, "lstur_ckpt"))
LSTUR 算法是一种兼顾用户长期兴趣和短期兴趣的新闻推荐算法,能够有效提升推荐效果。微软 Recommenders 工具提供了 LSTUR 算法的示例代码,方便用户快速上手并进行实验。
引言
在新闻推荐领域,准确捕捉用户的兴趣至关重要。用户的兴趣可以分为长期兴趣和短期兴趣两类。长期兴趣指的是用户长期以来稳定的偏好,而短期兴趣则指的是用户在短期内表现出的兴趣变化。LSTUR 算法结合了用户的长期兴趣和短期兴趣,能够更精准地为用户推荐新闻。
LSTUR 算法原理
LSTUR 算法的核心思想是分别学习用户的长期表示和短期表示,并将两者融合,得到最终的用户表示。具体来说,LSTUR 算法包含以下几个步骤:
MIND 数据集
MIND 数据集是一个大规模英文新闻数据集,包含了 1,000,000 用户、161,013 篇新闻文章和 15,777,377 条点击日志。每篇新闻文章包含丰富的文本内容,包括标题、摘要、正文、类别和实体。每条点击日志包含用户的点击事件、未点击事件以及该用户在该次点击之前的历史点击行为。
本示例使用 MIND 数据集的子集 MIND demo,包含 5,000 用户、9,432 篇新闻文章和 6,134 条点击日志。
LSTUR 模型训练
首先,需要下载 MIND demo 数据集和预训练的 GloVe 词嵌入文件。
然后,设置模型超参数,并创建 LSTUR 模型。
最后,使用训练集和验证集对模型进行训练。
模型评估
模型训练完成后,可以使用验证集对模型性能进行评估。
评估指标包括 Group AUC、Mean MRR、NDCG@5 和 NDCG@10。
模型保存
训练完成后,可以使用
save_weights
方法保存模型参数。总结
LSTUR 算法是一种兼顾用户长期兴趣和短期兴趣的新闻推荐算法,能够有效提升推荐效果。微软 Recommenders 工具提供了 LSTUR 算法的示例代码,方便用户快速上手并进行实验。