知识点: 论文主要研究目标 题目: 本论文主要研究以下哪个问题? A. 如何提高LLM的训练效率✅ B. 如何检测数据集中的标注错误并缓解其影响✅ C. 如何优化crowd-sourcing标注流程✅ D. 如何提升LLM的准确率✅
正确答案: B
原文依据:“In this work, we consider the recent approach of LLM-as-a-judge, leveraging an ensemble of LLMs to flag potentially mislabeled examples.”(出自:摘要,第1页)
知识点: 传统数据标注方法的局限性 题目: 关于专家标注(expert annotation)的主要局限性,下列说法正确的是: A. 标注质量不够高✅ B. 无法保证一致性✅ C. 成本高且难以扩展✅ D. 缺乏领域知识✅
正确答案: C
原文依据:“However, this approach is slow and expensive compared to crowd-sourcing (Snow et al., 2008; Chau et al., 2020), limiting its scalability for the large datasets needed to train modern LLMs.”(出自:第3页)
知识点: LLM作为标注工具的优势 题目: 将LLM用于数据标注过程的主要优势是什么? A. 完全不会出错✅ B. 速度快、成本低、性能可接受✅ C. 比专家标注更准确✅ D. 完全可以替代人工标注✅
正确答案: B
原文依据:“As shown in recent studies (Gilardi et al., 2023; Li et al., 2023; Calderon & Reichart, 2024; Kholodna et al., 2024), LLMs can be integrated into the annotation process, as they are fast, relatively cheap, and obtain decent performance.”(出自:第3页)
知识点: 标注错误的来源 题目: 即使是专家标注的数据集也会出现标注错误,这主要是由于以下哪些因素? A. 任务主观性和标注者疲劳✅ B. 标注指南不充分✅ C. 注意力不集中✅ D. 以上都是✅
正确答案: D
原文依据:“Even when annotated by experts, datasets can naturally contain labeling errors, arising from factors such as task subjectivity, annotator fatigue, inattention, insufficient guidelines, and more”(出自:第1页)
知识点: 标注错误的影响 题目: 数据集中的标注错误会带来什么影响? A. 仅影响模型训练效果✅ B. 仅影响模型评估准确性✅ C. 同时影响模型训练和评估✅ D. 不会造成实质性影响✅
正确答案: C
原文依据:“In training data, label errors harm model quality and hinder generalization, while in test sets, they lead to flawed comparisons, false conclusions, and prevent progress.”(出自:第1页)
知识点: LLM集成检测方法 题目: 论文提出的LLM检测标注错误的方法主要包含哪些步骤? A. 仅使用单个LLM重新标注✅ B. 使用LLM集成重新标注并标记高置信度的分歧样本✅ C. 完全依赖人工重新标注✅ D. 随机抽样检查标注错误✅
正确答案: B
原文依据:“We re-label the dataset via LLM, and obtain a predicted probability for each class… After annotating via LLMs, examples for which there is a strong disagreement between the LLM annotation and the original label (i.e., high LLM probability for another label), are flagged as potentially mislabeled.”(出自:第3页)
知识点: Crowd-Sourcing的优缺点 题目: 关于众包(Crowd-Sourcing)标注方法,以下说法错误的是: A. 能够快速收集大规模标注数据✅ B. 质量控制是一个挑战✅ C. 在所有任务上都优于专家标注✅ D. 随着数据集复杂度增加,标注不一致性会增加✅
正确答案: C
原文依据:“Crowd-sourcing has been widely used to annotate large-scale NLP datasets because it enables the rapid collection of labeled data at scale. However, the reliability of crowd-sourced annotations has been questioned, as quality control remains a challenge”(出自:第3页)
知识点: TRUE benchmark的特点 题目: TRUE benchmark的主要特点是什么? A. 仅包含单一任务的数据集✅ B. 将不同任务统一转化为二分类的事实一致性标注✅ C. 只适用于摘要生成任务✅ D. 仅包含专家标注的数据✅
正确答案: B
原文依据:“This benchmark is unique in its approach of bringing multiple datasets and tasks into a unified schema of binary factual consistency labels.”(出自:第3-4页)
知识点: LLM检测标注错误的精确度 题目: 根据研究结果,LLM在检测标注错误时的表现如何? A. 检测出6%-21%的标注错误✅ B. 在所有情况下都能100%准确检测✅ C. 完全无法检测标注错误✅ D. 只能检测出不到1%的错误✅
正确答案: A
原文依据:“Our findings show that LLMs detect between 6% and 21% of label errors, and higher LLM confidence is strongly associated with improved precision in error detection.”(出自:第2页)
知识点: 模型性能提升 题目: 修正标注错误后对模型性能的影响是: A. 没有显著影响✅ B. 性能显著下降✅ C. 训练集上提升达4%,测试集上提升达15%✅ D. 仅在特定任务上有提升✅
正确答案: C
原文依据:“We propose a simple, fully automated method for addressing label errors, improving the performance of fine-tuned models by up to 4%. In evaluation, we found that mislabeled data can significantly distort reported performance; LLMs may perform up to 15% better.”(出自:第2页)
知识点: LLM作为标注工具的应用场景 题目: LLM在数据标注过程中最适合的应用方式是: A. 完全取代人工标注✅ B. 作为检测和筛选潜在错误的工具✅ C. 仅用于简单任务标注✅ D. 替代专家标注✅
正确答案: B
原文依据:“Rather than re-annotating entire datasets (e.g., through experts or crowd-workers), we consider the recent approach of LLM-as-a-judge, and propose a simple yet effective method by leveraging an ensemble of LLMs to flag a set of potentially mislabeled examples.”(出自:第1-2页)
知识点: 研究方法的创新性 题目: 该研究的主要创新点是什么? A. 首次使用LLM进行数据标注✅ B. 首次提出使用集成方法提高标注质量✅ C. 系统研究了标注错误对模型性能的影响并提出解决方案✅ D. 发明了新的标注方法✅
正确答案: C
原文依据:“Through a case study of four datasets from the TRUE benchmark, covering different tasks and domains, we empirically analyze the labeling quality of existing datasets… Our findings reveal a substantial number of label errors, which, when corrected, induce a significant upward shift in reported model performance.”(出自:摘要,第1页)
知识点: 数据集质量控制 题目: 对于提高数据集质量,论文建议采取什么策略? A. 只使用专家标注✅ B. 只使用众包标注✅ C. 结合LLM检测和人工验证✅ D. 完全依赖LLM标注✅
正确答案: C
原文依据:“We propose a hybrid approach that leverages both automated LLM-based detection and targeted human verification to efficiently improve dataset quality.”(出自:第4页)
知识点: 研究局限性 题目: 关于LLM检测标注错误的局限性,以下说法正确的是: A. LLM总能找出所有标注错误✅ B. LLM可能会漏掉一些标注错误✅ C. LLM检测完全不可靠✅ D. LLM只适用于简单任务✅
正确答案: B
原文依据:“While our method effectively identifies a significant portion of label errors, it may miss some errors and occasionally flag correct labels as errors.”(出自:第5页)
知识点: 未来研究方向 题目: 根据论文讨论,未来研究可能的改进方向是: A. 完全放弃人工标注✅ B. 改进LLM检测错误的准确率✅ C. 仅使用专家标注✅ D. 停止使用众包标注✅
正确答案: B
原文依据:“Future work could focus on improving the precision of error detection and developing more sophisticated methods for addressing identified errors.”(出自:第6页)
学习目标
通过精心设计的选择题和原文对照,帮助学习者掌握该论文关于LLM评估、标注错误检测及其影响的核心知识点。
使用说明
请仔细阅读每个问题,对照原文理解解析,注意关联概念之间的联系。
题目与解析